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Chapter	I	

Transient	and	Harmonic	Analysis	of	Linear	Systems;	

Electromagnetic	Fields	and	Waves	

In	this	Chapter:	

	

Use	of	Phasors	in	Circuit	Analysis	(in	the	Frequency	Domain)		
 Start	with	a	circuit	model	in	the	Frequency	Domain	
 Develop	relevant	equation	in	terms	of	voltage	and	current	phasors,	e.g.	KVL,	KCL,	and	device	
voltage‐current	relations.	

 Solve	the	circuit	“simultaneous”	algebraic	relations	for	the	voltage/current	phasors	of	interest	
 Extract	the	time	domain	forms	of	relevant	voltages	and	currents	as	the	real	parts	of	the	product	
of	the	phasor	expression	and	exp(jωt),	i.e.,	f(t)=Real	Part	of	{[F.exp(jφ)].[exp(jωt)]}	

Phasors	and	Frequency	Domain	(Harmonic)	Analysis	
 Refer	to	Figure	1.7:	The	harmonic	signal,	A	cos(ωt+φ)	can	be	seen	as	the	horizontal	projection	
of	a	rotating	line	“phasor”	at	an	angular	frequency	of	ω.	

 A	complementary	“quadrature”	term,	A	sin(ωt+φ)	coexists	(does	not	contain	additional	
information).		A	“pack”	phasor	expression	ܣ ൌ ܣ ∙ ݁ሺఝሻ ൌ ሺ߮ሻݏܿ	ܣ  ݆ ∙ 	for	used	is	ሺ߮ሻ݊݅ݏ	ܣ
mathematical	convenience	without	compromising	the	accuracy	of	the	analysis	and	maintains	
the	ability	to	recover	the	true	harmonic	expressions	(see	addendum)		

States	and	Languages
 Time	Domain	and	Frequency	Domain	“Languages”	of	expression	for	the	development	of	
solutions	“expressions”	describing	Transient	and	Steady	“States”	

 Typically,	the	Time	Domain	“language”	is	used	for	expressing	transient	state	terms	while	the	
Frequency	domain	“language”	is	used	for	harmonic	steady	state	expressions	

 At	times,	or	for	special	purposes,	the	opposite	is	applied.	

Transient	vs	Harmonic	Analysis
Time	Domain	vs	Frequency	Domain	

 Transient	analysis	is	the	process	of	solving	for	the	time	domain	evolution	of	signals	(and	
system	responses)	as	time	functions.	

 Harmonic	analysis	is	the	process	of	solving	for	the	harmonic	(single	frequency)	steady	
state	signals	(and	system	responses).	

 The	time	domain	is	where	we	deal	with	all	analysis	procedures	as	functions	of	time.		This	
type	of	analysis	typically	results	in	time	dependent	differential	equations	that	require	
transformation	to	the	Frequency	domain	(or	the	Laplace	s‐domain)	

The	Frequency	Domain	and	the	Laplace Transform
 The	Laplace	transform	allows	us	to	convert	time	domain	expressions	(signals	as	well	as	system	

responses)	into	the	Laplace	or	s‐Domain	ܨሺݏሻ ൌ  ݂ሺݐሻ	݁െݐ݀ݐݏ
∞

0
; ݏ	 ൌ ߪ  ݆߱	

 Carrying	the	analysis	in	the	s‐domain	enables	us	to	solve	time	domain	transient	and	steady	state	
problems	through	the	conversion	of	complicated	differential	equations	to	much	more	manageable	
algebraic	equations.		

 Letting	σ=0,	the	F(s)	converges	to	F(jω)	which	is	the	Frequency	domain	phasor	expression	for	f(t)		

Addendum:	The	Mystery	of	j	and	Imaginary	Numbers
 Phasors	“Pack”	both	the	harmonic	form	of	a	signal	(or	system	response)	A	cos(ωt)	with	its	
complementary	quadrature	term	A	sin(ωt)	in	a	complex	expression	format:	A	cos(ωt)+j	A	sin(ωt)	

 The	use	of	the	exponent	form	of	the	Euler’s	formula	Aሾൌ A∠ሺφሻሿ ൌ A ∙ e୨ሺሻ ൌ A	cos	ሺφሻ  j ∙
A	sin	ሺφሻ	offers	the	great	convenience	of	dealing	with	exponential	in	contrast	to	potentially	
complicated	trigonometric	identities.	

 The	imaginary	coefficient	j	{=sqrt(‐1)},	used	for	including	the	quadrature	term,	allows	us	to	carry	
out	relevant	procedures	while	maintaining	the	physical	harmonic	terms	required	in	the	analysis.	
”j”	is	an	expression	of	a	π/2	phase	shift	(90°	CCW	rotation)	
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Introduction:	

We	 live	 in	 the	 time	domain…	All	occurrences	happen	 in	 the	 time	domain...	 Events	
happened	in	the	past…	happen	in	the	present…	and	other	events	will	happen	in	the	
future…!	 We	 witness	 physical	 phenomena	 in	 the	 real	 world	 and	 express	 their	
properties	in	real	numbers.		However,	at	times,	we	use	imaginary	tools	and	fictitious	
descriptions	to	facilitate	the	analysis,	especially	in	difficult	physical	situations.	

	Much	of	this	is	true	in	our	electrical	engineering	studies.		Examples	of	imaginary	tools	
are	 the	 use	 of	 complex	 variables	 to	 describe	 voltage	 phasors,	 impedances,	 and	
complex	power.		Examples	of	fictitious	(nonphysical)	descriptions	include	non‐causal	
operations,	integrations	from	zero	to	infinity,	and	“steady	state”	harmonic	analysis.	

With	 this	 introduction,	 you	 may	 think	 that	 this	 book	 intends	 to	 discredit	 the	
foundation	 of	 all	 our	 electrical	 engineering	 education	 and	 more.	 	 The	 answer	 is	
“nope”.		What	is	intended	here	is	to	remind	the	reader	of	some	“basic”	foundations	
that	get	overlooked	with	time	and	raise	relevant	warning	flags.	It	is	important	that	
we	stay	mindful	of	the	foundations	used	in	developing	the	tools	that	we	constantly	
use	 and	 apply.	 	 In	 addition,	 it	 is	most	 important	 to	 be	 aware	 of	 the	 physics	 of	 all	
procedures	we	carry	out	and	tools	we	use.		

Our	subject	in	this	chapter	is	Transient	and	Harmonic	Analyses…	Transient	analysis	
deals	with	the	system	(or	circuit)	response	to	a	time	varying	excitation	during	the	
transition	between	two	steady	states.	One	example	is	the	famous	battery‐switch‐RC	
circuit	when	we	 throw	 the	 switch	 on	 or	 off	 to	 charge	 or	 discharge	 the	 capacitor.	
Another	 example	 would	 be	 studying	 the	 transient	 as	 we	 turn	 on	 (or	 off)	 an	 AC	
(110/220	V	50/60	Hz)	appliance.		

The	other	type	of	analysis	we	refer	to	here	is	what	we	call	harmonic	analysis	and	there	
is	a	good	reason	for	choosing	this	wording	over	other	familiar	wordings…!	You	see…	
the	complementary	state	to	transient	is	“steady”.	However,	steady	may	mean	steady	
constant	or	steady	variable,	 i.e.	periodic.	 	Considering	steady	constant	as	a	 special	
case	of	periodic	with	a	period	that	is	too	long	(mathematically,	we	say	infinite),	then	
we	can	identify	the	alternate	state	to	transient	as	the	“periodic”	one,	the	simplest	form	
of	which	 is	 the	 harmonic	 time	 variation.	 	 Also,	 noting	 that	 for	 linear	 systems,	 the	
Fourier	 analysis	 can	 enable	 us	 to	 express	 other	 forms	 of	 periodic	 variations	 as	 a	
superposition	of	harmonics	of	different	periodicities	(different	frequencies).		Hence,	
we	 can	 claim	 that	 by	 covering	 transient	 and	 harmonic	 analyses,	 we	 are	 in	 fact	
covering	tools	 that	can	encompass	all	 forms	of	 linear	system	analyses	 that	we	can	
think	of.	

Time	Domain	and	Frequency	Domain:	

Now,	we	have	two	possible	domains	that	we	can	work	in;	the	time	domain	and	the	
frequency	domain.		The	time	domain	is	where	we	deal	with	all	analysis	procedures	as	
functions	 of	 time.	 	 In	 this	 type	 of	 analysis,	 we	 typically	 develop	 time	 dependent	
differential	equations	to	express	the	behavior	of	physically	based	system	(or	circuit)	
models.	Solving	these	equations	can	get	too	complicated	and	we	may	end	up	resorting	
to	 mathematical	 procedures	 and	 transforms	 to	 enable	 a	 solution.	 	 One	 typical	
transform	that	we	often	use	in	solving	electrical	circuit	problems	in	the	time	domain	
is	the	Laplace	transform.	The	Laplace	transform	converts	the	time	derivatives	into	
powers	of	“s”	in	a	complex	“s”	domain	and	we	end	up	with	algebraic	equations	that	
are	typically	solvable.	Once	we	get	a	solution	in	the	“s”	domain,	the	next	task	is	to	use	
the	inverse	Laplace	transform	to	yield	the	final	results	of	the	analysis	as	functions	of	
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time.	 	Our	challenge	at	 that	time	 is	to	find	physical	 interpretations	to	the	obtained	
expressions	and	relate	them	to	the	physical	phenomena.	

	
Figure	1.1:	Demonstrates	the	process	of	performing	analysis	in	the	time	domain.				

An	alternate	approach	to	working	in	the	time	domain	is	to	convert	the	problem	to	the	
frequency	domain	early	in	the	process	and	carry	out	the	solution	there	and	convert	
the	solution	back	to	the	time	domain	at	the	end,	see	Figure	1.2.	

The	use	of	red	downward	arrows	on	the	time	domain	side	is	to	indicate	the	difficulties	
that	this	approach	faces.	As	we	said	before,	we	can	use	the	Laplace	transform	once	we	
reach	 the	point	where	we	have	 “complicated”	differential	 equations,	 however,	 the	
frequency	domain	approach	avoids	the	need	to	develop	the	differential	equations	in	
the	first	place.	

	
Figure	1.2	

In	our	electrical	engineering	education,	the	frequency	domain	approach	dominates	
the	EE	curriculum	to	the	point	that	most	of	us	have	lost	our	relationship	with	the	time	
domain	altogether.	
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What	happened	was	that	we	started	out	with	the	time	domain	approach	and	we	did	
a	 few	 examples	 and	 simple	 cases	 there.	 	 Later	 on,	 we	 introduced	 the	 frequency	
domain	and	we	learned	how	to	do	the	whole	process	from	the	physical	problem	in	
the	time	domain	concluding	by	the	inverse	transformation	of	the	final	results	again	in	
the	time	domain.		Soon	afterwards,	we	learned	how	to	jump	from	the	physical	model	
into	the	frequency‐domain	circuit	model,	run	all	our	analyses	and	reach	the	results	in	
the	frequency	domain	and	end	there.		We	simply	lose	touch	with	the	physics	of	the	
problem	and	the	physics	of	the	analyses.		It	takes	additional	training	and	experience	
to	be	able	to	relate	the	frequency	domain	results	to	the	physics	of	the	system	without	
going	back	to	the	time	domain.	

		
Figure	1.3	

In	this	regard,	here	are	a	couple	of	interesting	analogies	that	you	may	find	useful:	

 Working	 in	 the	 time	domain	 is	 like	being	awake	 in	real	 life	where	we	witness	
events	 as	 they	 occur	 and	 experience	 problems	 and	 issues	 as	 they	 happen.	
Suppose	we	encounter	“this”	complication	that	we	cannot	resolve.		Next,	we	go	to	
“sleep”	 and	 dream	 a	 solution	 for	 this	 problem	 during	 our	 sleep,	 and	 we	 use	
magical	tools	and	reach	great	results	 to	the	“complicated”	 issue	 in	our	“dream	
world”.		However,	after	we	wake	up,	we	need	to	be	able	to	translate	those	“dream	
world”	 solutions	 to	 physical	 solutions	 that	 are	 meaningful	 in	 real	 life.	 	 Some	
would	 argue,	 the	 frequency	 domain	 is	 not	 a	 “dream	 world”,	 I	 argue	 back	 by	
asking:	 what	 do	 you	 think	 "݆ ൌ √െ1"	 is?	 “j”	 is	 an	 imaginary	 quantity	 in	 an	
imaginary	domain.		

 The	second	analogy	is	that	we	are	in	a	“shore”	city.		Our	goal	is	to	get	from	one	
part	 of	 town	 to	 another.	 	 With	 congested	 traffic	 and	 complicated	 routes,	 we	
decide	to	take	the	waterway	that	is	faster	and	straightforward.		Hence,	we	move	
from	land	to	sea,	make	our	way	through	the	waterway,	and	when	it	is	the	right	
location,	we	move	back	to	the	land	again.	 	If	we	chose	a	waterway	close	to	the	
shore,	 we	 can	 maintain	 an	 eye	 on	 the	 city’s	 landmarks	 and	 do	 not	 lose	 our	
orientation.		We	stay	in	touch	with	the	city	and	its	realities,	that	is.		However,	if	
we	take	a	waterway	deep	in	the	sea,	we	stand	a	chance	of	losing	our	orientation	
and	we	will	certainly	lose	our	feel	for	the	city	and	its	landmarks.	

It	is	true	that	with	extra	training	and	experience	we	can	relate	the	“dream”	to	reality	
or	 stay	on	 the	 course	without	monitoring	 the	 city’s	 landmarks.	 Therefore,	we	 can	
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always	 come	 up	with	 physical	 interpretations	 to	 all	 the	 frequency	 domain	 terms,	
procedures,	and	conclusions.	For	example,	“j”	is	a	90	degrees	phase	shift,	resonance	
at	 certain	 frequency	 means	 energy	 bouncing	 back	 and	 forth	 between	 storage	 in	
electric	and	magnetic	forms,	and	a	product	of	transfer	functions	corresponds	to	the	
impulse	response	of	their	cascade,	etc.	However,	it	is	always	a	plus	to	stay	in	touch	
with	 the	physics	of	 the	problems.	 	This	yields	deeper	understanding	and	 stronger	
comprehension,	and	often	leads	to	new	discoveries.	

States	and	Languages:		

Now,	which	 domain	 should	we	 use,	 and	 how	 to	 decide?	 	 Here	 is	 another	 analogy	
(please	refer	to	Figure	1.4).	 It	 is	typical	 for	people	 living	in	the	state	of	England	to	
communicate	 in	English,	while	residents	of	France	do	so	 in	French.	 	However,	 it	 is	
possible	in	some	cases,	although	untypical,	that	people	in	France	would	communicate	
in	English,	and	those	in	England	do	so	in	French.	

	 State
Language	 England	 France	

English	 1	 2	

French	 2	 1	
	

1	Conventional
2	Unconventional	but	valid

	

	 State

Language	 Transient Steady	State

Time	Domain	 1	 2	

Frequency	Domain	 2	 1	

Figure	1.4	

Likewise,	 transient	 state	 and	 steady	 state	 are	 states	 while	 Time	 Domain	 and	
Frequency	Domain	analyses	are	 forms	of	 communication	or	expression	 languages.	
Hence,	 it	 is	 typical	 to	 do	 transient	 analysis	 in	 the	 time	 domain	 and	 steady	 state	
(harmonic)	analysis	in	the	frequency	domain.		However,	for	certain	special	cases,	we	
do	the	opposite.	

	 	
Figure	1.5	

Phasors	and	Frequency	Domain	(Harmonic)	Analysis:		

It	is	known	that	harmonic	excitation	of	linear	systems	yields	harmonic	solutions	of	
the	same	frequency	as	that	of	the	excitation.		In	such	case,	all	signals	throughout	the	
entire	system	(circuit)	will	be	of	the	same	frequency	with	differing	magnitudes	and	
phases.	
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The	 general	 form	 of	 a	 typical	 time	 harmonic	 signal	 in	 the	 time	 domain	 would	
be	ܣ	ݏܿ	ሺ߱ݐ  ߮ሻ,	see	Figure	1.5.		In	the	frequency	domain,	we	represent	this	time	
varying	 function	by	a	 “phasor”	of	magnitude	A	 and	a	phase	angle	߮	 rotating	at	 an	
angular	speed	߱,	see	Figure	1.6.		

ܣ ൌ ݐሺ߱∠ܣ  ߮ሻ			 ሺ1.1ሻ	

	
Figure	1.6	

Using	analogies	to	the	mechanical	harmonic	motion	and	the	conversion	of	rotational	
motion	 into	 a	 reciprocating	 one,	 the	 relationship	 between	 the	 time	 domain	
representation	 (the	 cosine	 function)	 and	 the	 phasor	 representation	 is	 better	
demonstrated	in	Figure	1.6.		In	this	figure,	the	time	domain	waveform	is	presented	as	
the	projection	of	the	rotating	phasor	on	the	“horizontal”	axis.		

With	 this	 graphical	 phasor	 representation	 of	 the	 harmonic	 signal,	 an	 intriguing	
question	 arises.	 	 Why	 do	 we	 view	 only	 the	 “horizontal”	 projection	 of	 the	 phasor	
diagram?	What	can	we	make	out	of	its	“vertical”	projection?	The	answer	is	that	the	
vertical	 projection	 is	 in	 fact	 complementary	 to	 the	 horizontal	 projection	 and	 it	
coexists	whether	we	pay	attention	to	 it	or	not.	 In	other	words,	 its	 inclusion	 in	 the	
picture	does	not	add	any	knew	parameters	to	the	physics	of	the	problem.			

The	question	now	is,	if	we	were	to	include	this	complementary	term	in	our	mathematical	
analysis	without	altering	the	nature	of	the	original	harmonic	signal	term	or	having	the	
two	terms	mix	or	interfere,	or	affect	the	accuracy	of	the	analysis	or	alter	the	final	result,	
would	that	be	unacceptable?		The	logical	answer	is	no.	As	will	be	demonstrated	later	
in	 this	 section,	 this	 inclusion	 (in	 the	 proper	 manner)	 greatly	 facilitates	 the	
mathematical	analysis.	
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Figure	1.7	

Referring	 to	 the	Addendum	at	 the	 end	of	 this	 chapter,	we	 can	 pack	 the	 harmonic	
function	and	its	complement,	into	a	one‐pack	term	to	express	the	harmonic	phasor	in	
all	relevant	mathematical	analyses.	This	term	is	known	as	the	complex	phasor	and	
can	be	expressed	as	the	sum	of	both	real	and	imaginary	components.		Its	expression	
in	the	complex	domain	is	of	the	form	

ܣ ൌ ሾܣ ݐሺ߱ݏܿ  ߮ሻሿ  ݆	ሾܣ ݐሺ߱݊݅ݏ  ߮ሻሿ		 ሺ1.2ሻ	

This	phasor	can	also	be	expressed	in	its	magnitude	and	phase	angle	format:	

ܣ ൌ 	ሺ߮ሻ∠ܣ

Furthermore,	 the	 use	 of	 the	 Euler	 formula	 provides	 a	 convenient	 mathematical	
format	that	greatly	facilitates	relevant	mathematical	operations	and	procedures:	

ሾൌܣ ሺ߮ሻሿ∠ܣ ൌ ܣ ∙ ݁ሺఝሻ ൌ ሺ߮ሻ	ݏܿ	ܣ  ݆ ∙ 		ሺ߮ሻ	݊݅ݏ	ܣ ሺ1.3ሻ	

Consequently,	 to	 recover	 the	 time	 domain	 expression	 of	 the	 harmonic	 signal,	 all	
needed	is	to	extract	the	real	part	of	the	phasor	“pack”,	hence:		

ሻߛሺ	ݏܿ	ܥ ൌ ܴ݁	൛ܥ ∙ ݁ሺఊሻൟ	 ሺ1.4ሻ	

Now,	it	is	relevant	to	emphasize	that:	

 as	we	use	the	“pack”	phasor	term	expression	in	our	analysis,	our	goal	is	to	recover	
the	physically	acceptable	result	by	simply	eliminating	the	imaginary	term.		

 the	 use	 of	 Euler’s	 formula	 offers	 the	 great	 convenience	 of	 dealing	 with	
exponentials	in	contrast	with	potentially	complicated	trigonometric	identities.	

To	 demonstrate	 the	 convenience	 of	 using	 Euler’s	 exponential	 form	 for	 phasor	
expressions,	let	us	review	some	of	the	fundamental	mathematical	operations	in	this	
format:	

Addition	and	Subtraction:	

 Time	Domain	Representation:	

To	examine	the	holistic	picture,	we	
demonstrate	 both	 projections	 in	
Figure	1.7.	The	figure	reveals	to	us	
the	presence	of	“vertical”	projection	
in	 the	 form	 of	 another	
“complementary”	 harmonic	
function	ܣ	݊݅ݏ	ሺ߱ݐ  ߮ሻ	 	 that	 is	 in	
quadrature	to	the	original	one.	e.g.,	
when	the	original	function	is	at	its	
zero	value	(position	1	and3)	in	the	
figure,	 the	 complement	 function	
reveals	the	location	of	the	phasor	as	
it	has	+A	and	–A	on	the	vertical	axis.	
In	 addition,	 when	 the	 original	
function	is	at	positions	2	and	4	(‐A	
and	 +A	 in	 the	 horizontal	
projection),	 the	vertical	projection	
is	zero.		
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ݐሺ߱	ݏܿ	ܣ  ߮ሻ േ ݐሺ߱	ݏܿ	ܤ  ߮ሻ ൌ ݐሺ߱	ݏܿ	ܥ  ߮ሻ	

 Phasor	Representation:	

ܣൣ ∙ ݁ሺఠ௧ାఝಲሻ൧ േ ܤൣ ∙ ݁ሺఠ௧ାఝಳሻ൧ ൌ ܥൣ ∙ ݁ሺఠ௧ାఝሻ൧	

 Recovering	the	Time	Domain	Representation:	

ܥൣܴ݁ ∙ ݁ሺఠ௧ାఝሻ൧ ൌ ܴ݁൛ൣܣ ∙ ݁ሺఠ௧ାఝಲሻ൧ േ ܤൣ ∙ ݁ሺఠ௧ାఝಳሻ൧ൟ
ൌ ܣൣܴ݁ ∙ ݁ሺఠ௧ାఝಲሻ൧ േ ܤൣܴ݁ ∙ ݁ሺఠ௧ାఝಳሻ൧
ൌ ݐሺ߱	ݏܿ	ܣ  ߮ሻ േ ݐሺ߱	ݏܿ	ܤ  ߮ሻ	

Multiplication	by	a	“real”	Constant:	

 Time	Domain	Representation:	

ܽ ∙ ݐሺ߱	ݏܿ	ܣ  ߮ሻ ൌ ݐሺ߱	ݏܿ	ܥ  ߮ሻ	

 Phasor	Representation:	

൛ܽ ∙ ܣൣ ∙ ݁ሺఠ௧ାఝಲሻ൧ൟ ൌ ൣሼܽ ∙ ሽܣ ∙ ݁ሺఠ௧ାఝಲሻ൧	

 Recovering	the	Time	Domain	Representation:	

ܴ݁൛ܽ ∙ ܣൣ ∙ ݁ሺఠ௧ାఝಲሻ൧ൟ ൌ ܽ ∙ ܣൣܴ݁ ∙ ݁ሺఠ௧ାఝಲሻ൧ ൌ ݐሺ߱	ݏܿ	ܣܽ  ߮ሻ	

Time	Derivatives:	

 Time	Domain	Representation:	

݀ሾܣ	ݏܿ	ሺ߱ݐ  ߮ሻሿ

ݐ݀
ൌ െ߱ܣ	݊݅ݏ	ሺ߱ݐ  ߮ሻ ൌ 	ݏܿ	ܣ߱ ቀ߱ݐ  ߮ 

ߨ
2
ቁ	

 Phasor	Representation:	
ௗ

ௗ௧
ܣൣ ∙ ݁ሺఠ௧ାఝಲሻ൧ ൌ ܣ݆߱ൣ ∙ ݁ሺఠ௧ାఝಲሻ൧ ൌ ܣ߱ൣ ∙ ݁ሺఠ௧ାఝಲାగ/ଶሻ൧	 ሺ1.5ሻ	

 Recovering	the	Time	Domain	Representation:	

ܴ݁ ൜
݀
ݐ݀
ܣൣ ∙ ݁ሺఠ௧ାఝಲሻ൧ൠ ൌ ܴ݁൛݆߱ ∙ ܣൣ ∙ ݁ሺఠ௧ାఝಲሻ൧ൟ ൌ ܣ߱ ∙ ܴ݁ൣ݁ሺగ/ଶሻ ∙ ݁ሺఠ௧ାఝಲሻ൧

ൌ ݐሺ߱	ݏܿ	ܣ߱  ߮  2ሻ/ߨ ൌ െ߱ܣ	݊݅ݏ	ሺ߱ݐ  ߮ሻ

ൌ
݀
ݐ݀
ሾܣ	ݏܿ	ሺ߱ݐ  ߮ሻሿ	

Electric	Power	in	Time	Harmonic	Circuits:	(Using	both	voltage	and	current	phasors)	

 Time	Domain	Representation:	

Pୟ୴ ൌ av൛V୮୩	cos	ሺωt  φሻ ∙ I୮୩	cos	ሺωt  φ୍ሻൟ ൌ ሺ1/2ሻ ܸܫcos	ሺ߮ െ ߮ூሻ	

 Phasor	Representation:	

ܲ௩ ൌ ܴ݁ ቄൣ൫ ܸ/√2൯ ∙ ݁ሺఠ௧ାఝೇሻ൧ ∙ ൣ൫ܫ/√2൯ ∙ ݁ሺఠ௧ାఝሻ൧
∗
ቅ	 ሺ1.6ሻ	 	

 Recovering	the	Time	Domain	Representation:	

ܲ௩ ൌ ܴ݁ ቄൣ൫ ܸ/√2൯ ∙ ݁ሺఠ௧ାఝೇሻ൧ ∙ ൣ൫ܫ/√2൯ ∙ ݁ሺఠ௧ାఝሻ൧
∗
ቅ

ൌ ܴ݁൛ሺ1/2ሻ ∙ ൣ ܸ ∙ ܫ ∙ ݁ሺఝೇିఝሻ൧ൟ ൌ ሺ1/2ሻ ܸܫܿݏ	ሺ߮ െ ߮ூሻ	
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Use	of	Phasors	in	Circuit	Analysis	(in	the	Frequency	Domain)		

Performing	 circuit	 analysis	 using	 phasor	 “packs”	 is	 typically	 known	 as	 Frequency	
domain	analysis.		This	terminology	reflects	the	fact	that	the	analysis	is	performed	for	
one	 frequency	 at	 a	 time	 (single	 harmonic).	 	 The	 Euler	 expression	 of	 the	 phasor	
displays	only	the	phasor’s	magnitude	and	phase	and	not	its	frequency;	however,	the	
phasor	 frequency	must	 be	 defined	 and	 is	 an	 integral	 part	 of	 the	 analysis	 and	 its	
solution.	

Demonstration	of	Circuit	Analysis	in	the	Frequency	Domain:	

Starting	with	the	time	domain	form:	

To	demonstrate	 the	above‐discussed	concepts,	 let	us	 consider	a	 simple	R‐L	circuit	
excited	by	a	harmonic	voltage	source,	Figure	1.8.	The	desired	results	are	to	evaluate	
the	current	in	the	loop,	the	voltages	across	the	resistor	and	inductor,	as	well	as	the	
power	dissipated	in	the	resistor.	

	
Figure	1.8	

We	assume	 that	 the	 voltage	 source	 is	 a	harmonic	 source	with	 an	 amplitude	 of	Vs,	
radial	frequency	ω,	and	a	phase	angle	of	φvs	at	the	instant	t=0	(the	time	reference	for	
this	analysis).		Hence,	we	can	express	vs(t)	in	the	time	domain	as:	

ሻݐ௦ሺݒ ൌ ௦ܸ ݐሺ߱ݏܿ  ߮௩௦ሻ	 ሺ1.7ሻ	

Now,	we	write	KVL	around	the	only	loop	in	the	circuit,	thus:	

ሻݐ௦ሺݒ ൌ ܴ ∙ ݅ሺݐሻ  ሻݐሺݒ		;	ሻݐሺݒ ൌ ܮ ∙
ௗಽሺ௧ሻ

ௗ௧
	 ሺ1.8ሻ	

Next,	we	write	the	time	domain	expression	for	the	loop	current	in	the	form:	

݅ሺݐሻ ൌ ܫ ݐሺ߱ݏܿ  ߮ሻ	 (1.9)	

where	ILoop	is	the	peak	amplitude	and	φi		is	the	corresponding	phase.	

Now,	the	KVL	expression	(1.8)	in	the	time	domain	takes	on	the	form:	

ሼݒ௦ሺݐሻሽ ൌ ௦ܸ ݐሺ߱ݏܿ  ߮௩௦ሻ ൌ ܫ	ܴ ݐሺ߱ݏܿ  ߮ሻ  ܮ
ௗൣ	ூಽ	௦	ሺఠ௧ାఝሻ൧

ௗ௧
ൌ

ܫ	ܴ ݐሺ߱ݏܿ  ߮ሻ െ ܫ	ܮ߱ ݐሺ߱݊݅ݏ  ߮ሻ ൌ ݐሺ߱	ݏܿ	ܫ	ܴ  ߮ሻ 
ݐሺ߱	ݏܿ	ܫ	ܮ߱  ߮  	2ሻ/ߨ ሺ1.10ሻ	

Working	backward	towards	the	phasor	representation,	we	can	replace	the	cos	terms	
as	the	real	part	of	the	complex	Euler	(exponential)	form:	

ሼݒ௦ሺݐሻሽ ൌ ௦ܸ	ܴ݁ൣ݁ሺఠ௧ାఝೡೞሻ൧ ൌ ܴ݁ൣ݁ሺఠ௧ାఝሻ൧	ܫ	ܴ  	ܴ݁ൣ݁ሺఠ௧ାఝାగ/ଶሻ൧	ܫ	ܮ߱	
ሼݒ௦ሺݐሻሽ ൌ ܴ݁ൣ ௦ܸ	݁ሺఠ௧ାఝೡೞሻ൧ ൌ ݁ሺఠ௧ାఝሻ൧ܫ	ܴൣܴ݁	  ݁ሺఠ௧ାఝሻ݁ሺగ/ଶሻ൧ܫ	ܮ߱ൣܴ݁	

ൌ ݁ሺఠ௧ାఝሻ൧ܫ	ܴൣܴ݁	  	݁ሺఠ௧ାఝሻ൧ܫ	ܮ݆߱ൣܴ݁	
ሼݒ௦ሺݐሻሽ ൌ ܴ݁ൣ ௦ܸ	݁

ሺఠ௧ାఝೡೞሻ൧ ൌ 	ܴ݁ൣሺܴ  ݁ܫ	ሻܮ݆߱
ሺఠ௧ାఝሻ൧	

ሼݒ௦ሺݐሻሽ ൌ ܴ݁ൣ ௦ܸ	݁
ሺఝೡೞሻ݁ሺఠ௧ሻ൧ ൌ 	ܴ݁ൣሺܴ  ݁ܫ	ሻܮ݆߱

ሺఝሻ݁ሺఠ௧ሻ൧	
ሼݒ௦ሺݐሻሽ ൌ ܴ݁ൣܸ௦	݁

ሺఠ௧ሻ൧ ൌ 	ܴ݁ൣሺܴ  ݁	ܫ	ሻܮ݆߱
ሺఠ௧ሻ൧	 ሺ1.11ሻ	
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Where	the	voltage	and	current	phasors	notations	ܸ௦	ܽ݊݀		ܫ	are	used	in	place	of	

	 ௦ܸ	݁
ሺఝೡೞሻ	ܽ݊݀	ܫ݁

ሺఝሻ,	respectively.	

Examining	 equation	 (1.11),	 we	 recognize	 that	 it	 represents	 the	 real	 part	 of	 the	
complex	form:	

ൣܸ௦	݁
ሺఠ௧ሻ൧ ൌ ൣሺܴ  ݁	ܫ	ሻܮ݆߱

ሺఠ௧ሻ൧,	or	 ሺ1.12ሻ	
ܸ௦ ൌ ሺܴ  	,ܫ	ሻܮ݆߱ ሺ1.13ሻ	

which	 is	 the	 phasor	 form	 of	 the	 KVL	 equation	 for	 the	 circuit	 represented	 in	 the	
frequency	domain.	

Now,	using	(1.12),	we	can	solve	for	I୭୭୮	as	

൧ܫൣ ൌ
ൣೞ൧

ሺோାఠሻ
	 ሺ1.14ሻ	

From	which	the	time	domain	expression	for	iLoop	can	be	obtained	through	multiplying	
the	phasor	expression	by	݁ሺఠ௧ሻthen	extracting	the	real	part	of	the	product:	

൛݅ሺݐሻൟ ൌ ݁	ܫൣܴ݁
ሺఠ௧ሻ൧	 ሺ1.15ሻ	

Likewise,	we	can	derive	expressions	for	the	time	domain	form	of	the	voltage	drops	
across	the	resistor	and	the	inductor	as	well	as	the	power	dissipated	in	the	resistor:	

Now,	 let	 us	 tackle	 this	 example	 from	 the	 Frequency	 domain	 end.	 	 We	 start	 by	
converting	the	circuit	to	its	Frequency	domain	model;	voltage	and	currents	assume	
their	 phasor	 formats,	 while	 circuit	 elements	 take	 on	 their	 impedance/admittance	
expressions.		The	result	is	shown	in	Figure	1.9.		

ൣܸோ൧ ൌ ሺܴሻൣܫ൧ 		
௬ௗ௦
ሱۛ ۛሮ		 ሼݒோሺݐሻሽ ൌ ܴ݁ൣܸோ	݁

ሺఠ௧ሻ൧	 ሺ1.16ሻ	

ൣܸ൧ ൌ ሺ݆߱ܮሻൣܫ൧ 		
௬ௗ௦
ሱۛ ۛሮ		 ሼݒሺݐሻሽ ൌ ܴ݁ൣܸ	݁

ሺఠ௧ሻ൧	 ሺ1.17ሻ	

ோܲ ൌ ܴ݁ ቄሺ1/2ሻ ∙ ൣܸோ	൧ ቂܫ
∗

ቃቅ	 ሺ1.18ሻ	

Starting	with	the	frequency	domain	form:	

The	 short	 version	 for	 carrying	out	 this	 analysis	 starts	by	 converting	 the	 circuit	 in	
Figure	1.8	to	its	frequency	domain	model,	Figure	1.9.	

	 	
Figure	(1.9)	

Next,	we	write	KVL	for	the	loop	in	phasor	terms:	

ൣܸ௦൧ ൌ ሺܴ  	൧ܫൣ	ሻܮ݆߱ ሺ1.19ሻ	

Which	we	typically	write	in	the	frequency	domain	form		

௦ܸሺ݆߱ሻ ൌ ሼܴ  ሽܮ݆߱ ∙ 	,ሺ݆߱ሻ	ܫ

where	 ோܸሺ݆߱ሻ ൌ ܴ ∙ 		݀݊ܽ		ሺ݆߱ሻ	ܫ ܸሺ݆߱ሻ ൌ ܮ݆߱ ∙ 	(ሺ݆߱	ܫ
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Hence,	we	continue	the	solution	as	before:	

ሺ݆߱ሻ	ܫ ൌ
௦ܸሺ݆߱ሻ

ሺܴ  ሻܮ݆߱
		
௬ௗ௦
ሱۛ ۛሮ		 ൛݅ሺݐሻൟ ൌ ݁	ሺ݆߱ሻ	ܫൣܴ݁

ሺఠ௧ሻ൧	

ோܸሺ݆߱ሻ ൌ ሺܴሻ	ܫ	ሺ݆߱ሻ 		
௬ௗ௦
ሱۛ ۛሮ		 ሼݒோሺݐሻሽ ൌ ܴ݁ൣ ோܸሺ݆߱ሻ	݁

ሺఠ௧ሻ൧	

ܸሺ݆߱ሻ ൌ ሺ݆߱ܮሻ	ܫ	ሺ݆߱ሻ 		
௬ௗ௦
ሱۛ ۛሮ		 ሼݒሺݐሻሽ ൌ ܴ݁ൣ ܸሺ݆߱ሻ	݁

ሺఠ௧ሻ൧	

ோܲ ൌ ܴ݁ ቄሺ1/2ሻ ∙ ሾ ோܸሺ݆߱ሻ	ሿ ቂܫ
∗

	
ሺ݆߱ሻቃቅ	

Which	yields	identical	results	to	those	obtained	earlier	in	equations	ሺ1.14ሻ‐ሺ1.18ሻ	

The	Frequency	Domain	and	the	Laplace	Transform:	

In	 this	 section,	we	 briefly	 remind	 the	 reader	 of	 the	 Laplace	 transform	 and	how	 it	
relates	 to	 the	 Frequency	 Domain.	 	 As	 you	 recall	 from	 other	 Signals	 and	 Systems	
studies,	the	Laplace	transform	allows	us	to	convert	time	domain	expressions	(signals	
as	well	as	system	responses)	 into	the	Laplace	or	s‐Domain.	The	Laplace	transform	
expression	of	a	time	domain	function	f(t)	is	given	by:	

ሻݏሺܨ ൌ  ݂ሺݐሻ	݁ି௦௧݀ݐ
ஶ
 			 ሺ1.20ሻ	

The	obtained	transform	F(s)	 is	expressed	 in	 the	complex	s‐domain	where	s=σ+jω.	
This	transform	tool	enables	us	to	solve	time	domain	transient	problems	through	the	
conversion	of	complicated	differential	equations	to	much	more	manageable	algebraic	
equations.	The	transform	enables	us	to	solve	steady	state	harmonic	analyses	as	well,	
since	by	 letting	 the	 real	part	σ=0,	F(s)	 converges	 to	F(jω)	which	 is	 the	Frequency	
domain	phasor	expression	for	f(t)	function.			

If	we	were	 to	 solve	 the	 same	 example	 in	 Figure	 (1.9)	 in	 the	 s‐domain,	we	would	
replace	the	jω	in	the	KVL	loop	equation	(1.19)	by	s.		Hence	

௦ܸሺݏሻ ൌ ሺܴ  	ሻݏሺܫ	ሻܮ	ݏ (1.21)	
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Addendum	

The	Mystery	of	j	and	Imaginary	Numbers	

Suppose	we	package	both	the	horizontal	and	vertical	projection	terms	of	the	rotating	
phasor,	the	harmonic	function	ሾA cosሺωt  φሻሿ	and	its	complement	ሾA sinሺωt  φሻሿ,	
into	a	one	pack	term,	e.g.	PA.	This	pack	term	is	to	be	used	to	express	the	phasor	in	all	
relevant	mathematical	analyses.	Hence,	the	PA	term	needs	to	take	the	simple	form	of	
a	 linear	mix	of	the	harmonic	function	and	its	complement	in	order	to	facilitate	the	
separation	process	when	needed.		

Hence,	we	write:	

ܲ ൌ ሾܣ ݐሺ߱ݏܿ  ߮ሻሿ  ܣሾ	ݍ ݐሺ߱݊݅ݏ  ߮ሻሿ			ݎ	 ሺ1.22ሻ	
			 ܲ ൌ ሾܣ ሻሿߙሺݏܿ  ܣሾ	ݍ 	ݐݎ݄ݏ	ݎ݂			ሻሿߙሺ݊݅ݏ ሺ1.23ሻ	

where	q	is	the	mixing	coefficient.	

In	a	similar	way,	we	consider	a	second	harmonic	function	as	follows:	

ܲ ൌ ሾܤ ሻሿߚሺݏܿ  ܤሾ	ݍ 	ሻሿߚሺ݊݅ݏ ሺ1.24ሻ	

Now,	we	examine	the	results	obtained	by	putting	the	packed	terms	 ܲ	ܽ݊݀	 ܲ	through	
different	 mathematical	 procedures	 that	 are	 typically	 required	 in	 the	 analysis	 of	
harmonic	signals.		The	goal	is	to	decide	if	the	obtained	results	for	the	packed	terms	
maintain	 the	 separability	 that	 allows	 us	 to	 retrieve	 the	 proper	 harmonic	 analysis	
results.	We	will	demonstrate	here	some	of	 these	 typical	mathematical	procedures,	
namely	scaling	(multiply	or	divide	by	a	scalar),	addition/subtraction,	multiplication,	
and	differentiation.	

Scaling:	

Let	us	 start	by	 the	 scaling	operation	by	considering	 the	pack	PA	 scaled	by	 the	
scalar	“a”,	hence		

ܽ ∙ ܲ ൌ ܽ ∙ ሼሾܣ ሻሿߙሺݏܿ  ܣሾ	ݍ ሻሿሽߙሺ݊݅ݏ ൌ ሼሾܽ ∙ ܣ ሻሿߙሺݏܿ  ሾܽ	ݍ ∙ ܣ 	ሻሿሽߙሺ݊݅ݏ

Thus	concluding	that	the	scaling	operation	did	not	affect	the	separability	of	both	
the	cosine	and	sine	terms.	

Addition/Subtraction:	

The	sum	ܽ. ܲ  ܾ. ܲ	yields	

ܽ ∙ ܲ  ܾ ∙ ܲ ൌ ሼሾܽ ∙ ܣ ሻሿߙሺݏܿ  ሾܽ	ݍ ∙ ܣ ሻሿሽߙሺ݊݅ݏ
േ	ሼሾܾ ∙ ܤ ሻሿߚሺݏܿ  ሾܾ	ݍ ∙ ܤ 	ሻሿሽߚሺ݊݅ݏ

ൌ ൛ൣܽ ∙ ܣ ∙ ሻߙሺ	ݏܿ േ ܾ ∙ ܤ ∙ ሻ൧ߚሺ	ݏܿ  ݍ ∙ ൣܽ ∙ ܣ ∙ ሻߙሺ	݊݅ݏ േ ܾ ∙ ܤ ∙ 	ሻ൧ൟߚሺ	݊݅ݏ

It	is	clear	that	the	sum	of	the	cosine	terms	is	separable	from	that	of	the	sine	terms,	
which	makes	our	packaging	scheme	plausible	so	far.	

Multiplication:	

Recognizing	 that	 the	 product	 of	 two	 phasors	 is	 supposed	 to	 yield	 a	 product	
phasor	whose	magnitude	is	the	product	of	the	two	individual	magnitudes	and	its	
phase	is	the	sum	of	the	two	individual	phasor	phases.	Using	the	notation:	

ܣ ൌ ,	ߙ∠ܣ ܤ ൌ ,	ߚ∠ܤ ܥ								݀݊ܽ ൌ 			ߛ∠ܥ

Then,	the	product		ܥ ൌ ܣ ∙ ,ܤ ܥ					ݏܽ	݂݀݁݊݅݁݀	ݏ݅ ൌ ܣ ∙ ,ܤ ߛ						݀݊ܽ ൌ ߙ  	ߚ
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The	corresponding	time	domain	form	for	ܥ	is		

ܥ ∙ ሻߛሺ	ݏܿ ൌ ܣ ∙ ܤ ∙ ߙሺ	ݏܿ  	ሻߚ

Hence		

ܲ ൌ ൛ܣ ∙ ܤ ∙ ߙሺ	ݏܿ  ሻߚ  ݍ ∙ ܣ ∙ ܤ ∙ ߙሺ	݊݅ݏ  	ሻൟߚ

ܲ ൌ ൛ܣ ∙ ܤ ∙ ሻߙሺ	ݏܿൣ ∙ ሻߚሺ	ݏܿ െ ሻߙሺ	݊݅ݏ ∙ ሻ൧ߚሺ	݊݅ݏ  ݍ ∙ ܣ ∙ ܤ ∙ ߙሺ	݊݅ݏ  	ሻൟߚ ሺ1.25ሻ	

Now,	multiplication	of	the	two	packs	 ܲ	ܽ݊݀	 ܲ	is	put	through	to	yield	 ܲ,	hence	

ܲ ൌ ܲ. ܲ ൌ ൛ܣ ∙ ሻߙሺ	ݏܿ  ݍ ∙ ܣ ∙ ሻൟߙሺ	݊݅ݏ ∙ ൛ܤ ∙ ሻߚሺ	ݏܿ  ݍ ∙ ܤ ∙ 	ሻൟߚሺ	݊݅ݏ
ൌ ൛ܣ ∙ ܤ ∙ ሻߙሺ	ݏܿ ∙ ሻߚሺ	ݏܿ  ଶݍ ∙ ܣ ∙ ܤ ∙ ሻߙሺ	݊݅ݏ ∙ ሻߚሺ	݊݅ݏ  2 ∙ ݍ ∙ ܣ ∙ ܤ

∙ ሻߙሺ	݊݅ݏൣ ∙ ሻߚሺ	ݏܿ  ሻߙሺ	ݏܿ ∙ 	ሻ൧ൟߚሺ	݊݅ݏ

ܲ ൌ ൛ܣ ∙ ܤ ∙ ሻߙሺ	ݏܿൣ ∙ ሻߚሺ	ݏܿ  ଶݍ ∙ ሻߙሺ	݊݅ݏ ∙ ሻ൧ߚሺ	݊݅ݏ  ݍ ∙ ܣ ∙ ܤ ∙ ߙሺ	݊݅ݏ  	ሻൟሺ1.26ሻߚ

For	 the	 two	results	1.25	and	1.26	 to	agree,	 the	quantity	q2	must	equal	 ‐1,	and	
hence	q	should	equal	to	the	square	root	of	“‐1”.		Which	is	not	a	physical	quantity;	
however,	examining	q	and	q2	in	the	light	of	phasor	expressions,	we	recognize		

ଶݍ ൌ ݍ					݀݊ܽ					ߨ∠1 ൌ 1∠ሺ2/ߨሻ		 ሺ1.27ሻ	

This	ݍ	is	what	we	customarily	refer	to	as	the	imaginary	term	“j”,	(also	termed	as	
“i”	in	the	literature).	

݆ଶ ൌ ݆					݀݊ܽ					ߨ∠1 ൌ 1∠ሺ2/ߨሻ		 ሺ1.28ሻ	

The	naming	of	the	“complementary”	q	(now	j)	term	as	“imaginary”	is	befitting	since	
the	 square	 root	 of	 “‐1”	 is	 not	 physical	 or	 “real”,	 and	 hence	 “imaginary”.	 	We	 also	
recognize	that	in	our	harmonic	analysis,	the	original	harmonic	term	is	the	one	that	
physically	exists	and	 that	 the	complementary	 term	does	not.	True,	we	packed	this	
complementary	imaginary	term	in	our	analysis	for	mathematical	convenience,	but	at	
the	end	of	our	analysis,	only	the	physical	signal	is	what	matters	and	what	results.	

Consequently,	 as	 we	 use	 pack	 term	 expressions,	 e.g.	 ܲ ൌ ሾܣ cosሺߙሻሿ 
݆	ሾܣ sinሺߙሻሿ, 	term	acceptable	physically	the	recover	to	is	goal	our	analysis,	our	in	.ܿݐ݁
for	the	analysis	result	by	simply	eliminating	the	imaginary	term,	hence	

ሻߛሺ	ݏܿ	ܥ ൌ ܴ݁	ሼܥ	ݏܿ	ሺߛሻ  ,ሻሽߛሺ	݊݅ݏ	ܥ	݆ 	"݂	ݐݎܽ	݈ܴܽ݁"	ݎ݂	ݐݎ݄ݏ	ݏ݅	ܴ݁	݁ݎ݄݁ݓ

With	the	presence	of	both	the	real	and	imaginary	components	in	the	resulting	phasor	
expressions,	we	find	ourselves	working	in	what	we	refer	to	as	the	complex	domain.		

At	this	point,	it	is	relevant	to	state	that	the	packing	formula	that	we	proposed	earlier	
to	combine	the	original	“real”	harmonic	signal	and	the	“imaginary”	complementary	
term	is	in	harmony	with	the	Euler	formula:	

ሾൌܥ ሻሿߛሺ∠ܥ ൌ ܥ ∙ e୨ሺஓሻ ൌ ሻߛሺ	ݏܿ	ܥ  ݆ ∙ 		ሻߛሺ	݊݅ݏ	ܥ

And	hence,		

ሻߛሺ	ݏܿ	ܥ ൌ ܴ݁	൛ܥ ∙ ݁ሺఊሻൟ	

The	use	of	Euler’s	formula	offers	the	great	convenience	of	dealing	with	exponentials	
in	contrast	to	potentially	complicated	trigonometric	identities.	
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It	 is	 relevant	 to	 state	 that	 the	 imaginary	quantity	 j,	 equation	 (1.28),	 represent	 the	
packing	factor	of	the	“quadrature”	complementary	term.		“j”	as	a	phasor	represent	a	
unity	magnitude	and	a	π/2	phase	(90°	CCW	rotation):	

݆ ൌ 1 ∙ ݁
ೕഏ
మ 			ܽ݊݀			݆ଶ ൌ 1 ∙ ݁ଶ

ೕഏ
మ ൌ 1 ∙ ݁గ ൌ െ1	 (1.29)	

And	hence	the	famous	identity	

݆ ൌ √െ1	 ሺ1.30ሻ	

Finally,	 Figure	 1.10	 is	 a	 graphical	 demonstration	 of	 the	 concepts	 discussed	 above	
through	expressing	a	phasor	magnitude	of	“1”	with	different	phase	angles.	
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