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Introduction:	

In	the	previous	chapter,	we	studied	the	performance	of	Transmission	Lines	as	circuit	
elements	using	an	RLCG	model.		In	other	words,	we	used	the	circuit	elements	model	
to	 study	 the	wave	 propagation	 properties	 of	 the	 transmission	media.	 	 This	 RLCG	
model	 is	 in	 fact	 an	 approximation	 and	 oversimplification	 of	 the	 physical	 TL	
configuration.	The	only	way	to	appreciate	this	fact	is	for	us	to	examine	how	such	a	
model	is	developed.		This	will	be	the	topic	of	the	following	chapters	of	this	book	where	
we	will	be	studying	relevant	electromagnetic	topics	leading	to	the	tools	that	allow	us	
to	determine	 these	 “Circuits”	model	parameters.	 	 In	 the	process,	we	will	 arrive	 at	
more	powerful	static	and	dynamic	electromagnetic	analysis	tools.	 	These	tools	will	
enable	us	to	study	phenomena	that	are	more	complex	without	resorting	to	the	over‐
simplification	of	using	circuit	element	modeling.			

You	see,	 the	 issue	with	the	use	of	approximate	models	 is	that	you	typically	cannot	
predict	when	the	use	of	these	models	will	fail	in	yielding	reliable	results.		In	the	early	
discussion	 we	 had	 in	 Chapter	 I,	 we	 showed	 the	 need	 to	 resort	 to	 TL	 analysis	
techniques	when	the	size	of	the	components	is	no	longer	negligible	compared	to	the	
wavelength.	One	can	predict	as	a	result	that	“approximate”	circuit	model	would	fail	
as	the	frequency	goes	high.		Considering	the	cases	of	mm	waves	and	optical	waves,	it	
is	not	practical	to	represent	such	cases	using	Circuits	models	at	all.	The	only	way	to	
deal	with	these	cases	is	through	electromagnetic	analysis.		

There	 are	 other	 classes	 of	 problems	 that	 require	 a	 decent	 appreciation	 of	
electromagnetic	analysis	tools.		Examples	include	(but	not	limited	to):	

 Antenna	analysis	and	design	
 Wireless	communication	systems	and	devices	
 Semiconductor	devices	and	integrated	circuits	
 Computer	chips	(processors,	memory,	etc.)	
 Circuit	boards	(planar,	multilayer,	flexible,	etc.)	
 Cables,	connectors,	and	adaptors.	
 Discrete	components	(R,	C,	L,	transformers,	etc.)	
 Power	systems	and	machines	(transformers,	motors,	generators,	etc.)	
 Magnetic	devices	(sensors,	relays,	actuators,	etc.)		
 MEMS	and	MW	devices	
 RADAR	and	remote	sensing	
 Microwave	heating	and	curing	
 EMI/EMC	analysis	
 Nanotechnology	
 Photonics	

To	 appreciate	 the	 argument	 we	 are	 making	 here,	 let	 us	 discuss	 an	 example	 of	
capacitance;	one	of	 the	 fundamental	 circuit	 elements	 that	 you	have	 learned	about	
before	and	will	be	discussed	in	more	detail	in	later	chapters.		

A	 capacitor	 is	 simply	 formed	 of	 two	 conductors	 isolated	 from	 each	 other	 by	 a	
dielectric	 (insulator).	 	 Physical	 capacitors	 that	we	 often	 see	 in	 circuit	 boards	 and	
electrical	 and	 electronic	 devices	 take	many	 shapes;	 typical	 shapes	 are	depicted	 in	
Figure	3.1.	The	figure	shows	the	physical	shapes	of	some	“Ceramic	Disc”	capacitors	
and	next	to	them	is	a	simplified	sketch	of	their	internal	physical	structure.	
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Figure	3.1	

The	 typical	 circuit	 analysis	 for	 such	 a	device	 is	 a	 capacitive	 circuit	 element	 in	 the	
nominal	 capacitance	 value	 of	 the	 capacitor.	 	 Careful	 analysis	 shows	 that	 such	
simplified	model	 is	not	accurate	enough	for	certain	applications,	especially	at	high	
(RF)	frequencies.		Other	“packaging”	and	“parasitic”	elements	are	present	that	must	
be	 accounted	 for.	 	 Examples	 are	 dielectric	 leakage	 conductance	 (G),	 packaging	
capacitance	(Cp),	lead	inductance	(Lp,	due	to	induced	magnetic	fields),	and	lead	(wire)	
resistance	(Rp).	These	are	shown	in	Figure	3.2.		

	
Figure	3.2	

That	being	said,	to	be	able	to	develop	the	details	of	such	model,	we	need	to	understand	
and	 relate	 to	 the	physical	phenomenon	of	 resistance,	 inductance,	 capacitance,	 and	
how	 the	 geometrical	 configuration	 and	 material	 properties	 among	 other	 factors	
influence	their	behavior.	This	is	exactly	what	we	are	going	to	“introduce”	the	learner	
to	in	this	text	book.		We	use	the	term	“introduce”	since	the	topics	involved	are	far	wide	
and	cannot	be	put	all	in	one	book,	especially	at	the	introductory	level	to	the	subject	of	
EM.	

More	about	the	RLCG	Parameters	

As	we	recall	from	past	studies	of	circuit	theory,	resistance	and	conductance,	are	both	
two	sides	to	the	same	phenomenon.	Both	have	to	do	with	the	ability	of	the	charges	to	
move	and	the	“resistivity”	or	“conductivity”	of	the	media	they	move	or	“flow”	in.		The	
conductance	is	simply	the	mathematical	inverse	of	the	resistance.		In	this	regard,	we	
learned	 that	 materials	 are	 divided	 into	 two	 main	 categories:	 conductors	 and	
insulators.		A	third	category	was	added	later	in	our	studies	as	the	“semiconductors”	
which	 is	 by	 default	 an	 insulator	 that	 conducts	 in	 certain	 ways	 under	 certain	
conditions.		Conductors	are	those	materials	that	have	amble	of	mobile	“free”	charges	
that	can	move	 if	 forced	to.	The	motion	of	the	 free	charges	 is	known	as	the	electric	
current.	 	The	amount	of	 “impedance”	 this	 flow	encounters	 is	called	 the	resistance,	
which	depends	on	the	properties	of	the	material	and	the	geometrical	configuration	
and	dimensions.	The	current	flow	against	the	resistance	causes	an	electric	potential	
drop	and	hence	power	dissipation.	
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As	 for	 the	capacitance,	 it	 is	 associated	with	 the	presence	of	 an	 insulating	material	
(dielectric)	that	isolates	two	conductor	surfaces.		The	capacitor	can	be	charged	(and	
discharged)	 by	 altering	 the	 charge	 amount	 on	 the	 conductor	 terminals	 of	 the	
capacitor.		This,	in	turn,	results	in	a	potential	difference	across	the	capacitor	terminals	
which	is	an	indication	of	energy	storage	in	the	capacitor.		Energy	can	be	stored	(and	
retrieved)	in	the	capacitor	without	loss	as	long	as	the	insulating	material	is	lossless	
and	the	two	conductors	are	perfect.		An	ideal	insulating	material	does	not	allow	direct	
current	flow	in	a	capacitive	circuit	element.		Yet	in	a	dynamic	situation,	and	as	a	result	
of	charge	fluctuations,	a	dynamic	current	is	modeled	in	the	circuit.		We	will	learn	later	
about	this	current	as	the	“displacement”	current	in	the	dielectric	insulator.			

The	 inductance	 has	 to	 do	with	 the	magnetic	 behavior	 of	 the	media	 as	 seen	 by	 an	
electric	circuit.		Typically,	a	conductor	interaction	(linkage)	with	a	medium	(magnetic	
or	 nonmagnetic)	 represents	 an	 inductance	 as	 modeled	 in	 the	 electrical	 circuit	
containing	that	conductor.		A	time	varying	current	flowing	in	the	inductor	results	in	a	
potential	difference	across	its	terminals	while	a	direct	current	does	not	produce	any.		
Both	direct	and	time	varying	currents	result	in	static	and	dynamic	energy	storage	in	
the	inductance	with	no	associated	dissipation	or	loss.	The	inductance	value	depends	
on	 the	 magnetic	 (or	 non‐magnetic)	 properties	 of	 the	 medium,	 its	 geometrical	
configuration	 and	 dimensions,	 as	 well	 as	 the	 geometrical	 configuration	 and	
dimensions	 of	 the	 conductor	 (coil)	 and	 its	 shape	 of	 interaction	 (linkage)	with	 the	
medium.	

With	 all	 this	 background	 information	 about	 the	 Capacitance.	 Resistance,	 and	
Inductance,	 it	 is	clear	that	we	need	to	study	the	electric	and	magnetic	phenomena	
associated	with	static	and	dynamic	charges	and	 their	 interactions	with	dielectrics,	
conductors,	 and	magnetic/non‐magnetic	materials.	 	We	will	 do	 so	 in	 the	next	 few	
chapters	 starting	 with	 static	 charges,	 charges	 moving	 with	 constant	 velocity	
generating	direct	currents,	and	finally	the	general	case	of	time	varying	currents.		The	
first	two	steps	of	this	study	will	fall	under	the	“statics”	category,	while	the	third	one	
will	be	under	“dynamics”.	

Before	we	 indulge	ourselves	 in	 this	 Static/Dynamic	 study,	we	will	 need	 to	 review	
some	mathematical	tools	that	we	cannot	do	without.		This	review	is	covered	in	the	
Addenda	of	this	chapter,	while	we	start	our	Statics	study	in	the	next	chapter,	Chapter	
IV.	
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Addendum	I	

Coordinate	Systems	

Introduction	

Coordinate	systems	are	used	to	define	positions/locations	in	space	relative	to	some	
arbitrary	 origin.	 	 Three	 orthonormal	 coordinates	 sufficiently	 define	 points	 and	
locations	 in	 three	 dimensional	 space.	 	 There	 are	 three	 acknowledged	 coordinate	
systems	 in	 this	 regard	 which	 we	 will	 review	 here	 in	 this	 chapter;	 they	 are:	 the	
Cartesian,	the	Cylindrical,	and	the	Spherical	coordinate	systems.	

The	Cartesian	coordinate	system:	

The	 Cartesian	 coordinate	 system	 is	 the	 most	 commonly	 used	 as	 it	 utilizes	 three	
orthonormal	 constant‐direction	 coordinates.	 	 Also,	 because	 most	 of	 the	 physical	
structures	are	based	on	rectangular	shapes.	The	convenience	of	having	fixed	direction	
for	its	three	coordinated	pays	off	in	many	analyses	as	we	will	see	in	our	studies	in	this	
book	and	elsewhere.	

In	 Cartesian	 coordinates,	 we	 establish	 three	 orthonormal	
lines/directions/coordinates	 that	 stem	 from	 an	 arbitrary	 origin.	 Typically,	 two	 of	
these	coordinates	are	laid	flat	on	a	horizontal	plane;	these	are	typically	chosen	as	the	
x	 and	 y	 coordinates	 (see	 Figure	 3.3).	 A	 third	 coordinate	 is	 made	 to	 emerge	
orthonormally	to	the	x‐y	plane	and	is	called	the	z‐coordinate.		The	positive	directions	
of	the	three	coordinates	are	chosen	to	form	a	right‐hand	system	in	the	x‐y‐z‐x	order	
(see	Figure	3.4).		The	figure	also	shows	the	three	unit	vectors	 Ԧܽ௫, Ԧܽ௬, ܽ݊݀	 Ԧܽ௭	for	this	
coordinate	system.	 

	
Figure	3.3	

	
Figure	3.4	
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In	the	Cartesian	coordinate	system,	a	point	p	is	specified	by	the	three	coordinates	x,	
y,	and	z;	these	are	the	normal	distances	between	the	point	p	and	the	y‐z	plane,	z‐x	
plane,	and	the	x‐y	plane,	respectively	(Figure	3.5).	

	
Figure	3.5	

For	 integration	 purposes,	 incremental	 elements	 at	 p	 correspond	 to	 increasing	 the	
coordinate	 values	 x,	 y,	 and	 z	 by	 Δx,	 Δy,	 and	 Δz,	 respectively,	 Figure	 3.6.	 The	
corresponding	 volume	 for	 the	 incremental	 rectangular	 prism	 is	 the	 product	 of	 all	
three	sides	Δv=Δx	Δy	Δz.	

	
Figure	3.6	

The	vector	representation	of	the	three	incremental	lengths	is	given	in	Figure	3.7	while	
the	corresponding	three	 incremental	surface	area	vectors	are	shown	in	Figure	3.8.	
More	discussion	of	vectors	will	follow	in	the	next	Addendum	of	this	chapter.	

We	need	to	recognize	that	the	unit	vectors	 Ԧܽ௫, Ԧܽ௬, ܽ݊݀	 Ԧܽ௭	are	constant	for	all	points	in	
space	for	this	coordinate	system.	 	They	are	constant	in	magnitude	(which	is	unity)	
and	constant	in	directions	as	well.	Length	vectors	have	directions	along	the	lengths	
themselves,	while	the	direction	of	an	area	vector	is	in	the	outward	normal	of	the	face	
of	that	area.	
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Figure	3.7	

	
Figure	3.8	

The	Cylindrical	coordinate	system:	

Cylindrical	coordinates	are	useful	 to	express	positions	and	 location	when	a	spatial	
configuration	 is	 essentially	 cylindrical.	 In	 this	 case,	 Figure	 3.9	 shows	 the	 three	
orthonormal	 Cylindrical	 coordinates	 ρ,	 φ,	 and	 z	 as	 laid	 over	 the	 corresponding	
Cartesian	 system	 chosen	with	 a	 common	 z‐axis.	 In	 this	 figure,	 ρ	 is	 the	 radius	 of	 a	
vertical	cylinder	passing	by	 the	position,	φ	 is	 the	angle	between	the	vertical	plane	
containing	the	z‐axis	and	the	position	and	the	z‐x	plane;	finally,	z	is	the	height	of	the	
position	 above	 the	 x‐y	 plane.	 The	 unit	 vectors	 along	 the	 three	 coordinates	 are	
demonstrated	 in	 Figure	 3.10.	 	 The	 positive	 directions	 of	 the	 three	 coordinates	 is	
chosen	to	form	a	right‐handed	system	in	the	ρ‐φ‐z‐ρ	order,	Figure	3.11. 

	
Figure	3.9	
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Figure	3.10	

	
Figure	3.11	

For	 integration	 purposes,	 incremental	 elements	 at	 p	 correspond	 to	 increasing	 the	
coordinate	values	ρ,	φ,	and	z	by	Δρ,	Δφ,	and	Δz,	respectively,	Figure	3.12.	The	side	
lengths	of	the	corresponding	incremental	“rectangular”	prism	are	Δρ,	ρΔφ,	and	Δz,	
respectively.		The	corresponding	incremental	volume	is	the	product	of	all	three	sides	
Δv=	Δρ	ρΔφ	Δz.	

	
Figure	3.12	

The	vector	 representation	of	 the	 three	 incremental	 lengths	 is	given	 in	Figure	3.13	
while	the	corresponding	three	incremental	surface	area	vectors	are	shown	in	Figure	
3.14.	 Unlike	 the	 case	 with	 Cartesian	 coordinates,	 the	 unit	 vectors	 Ԧܽఘ	ܽ݊݀	 Ԧܽఝ	 are	
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variable	vectors	as	they	both	vary	in	direction	as	we	move	around	in	space.	However,	
the	unit	vector	 Ԧܽ௭	is	the	same	as	that	of	Cartesian	coordinates	and	hence	is	a	constant	
vector	for	all	points	in	space.	

	
Figure	3.13	

	
Figure	3.14	

The	Spherical	coordinate	system:	

Spherical	 coordinates	 are	 typically	 used	 in	 cases	 where	 a	 spatial	 configuration	 is	
essentially	spherical.	The	three	orthonormal	Spherical	coordinates	are	r,	θ,	and	φ,	see	
Figure	3.15.		This	figure	shows	all	three	coordinate	systems	simultaneously	in	order	
to	demonstrate	their	relationship	to	each	other.			

As	shown	in	the	figure,	r	is	the	radius	of	a	sphere	passing	by	the	position	p	while	being	
concentric	with	the	origin.			The	angle	θ	is	the	second	coordinate	parameter	and	is	the	
angle	between	the	radial	line	connecting	the	position	to	the	origin	and	the	z‐axis.		The	
angle	θ	can	also	be	defined	as	the	angle	of	the	cone	whose	head	is	the	origin,	coaxial	
with	 the	 z‐axis	 and	passing	by	 the	position	p.	 	 Finally,	 the	 angle	φ	 is	 the	 same	as	
defined	 for	 Cylindrical	 coordinates,	 i.e.,	 the	 angle	 between	 the	 vertical	 plane	
containing	the	z‐axis	and	the	position	p	and	the	z‐x	plane.	
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Figure	3.15	

In	Figure	3.16,	we	demonstrate	 the	 three	orthonormal	unit	vectors	 Ԧܽ௥	, Ԧܽఏ, ܽ݊݀	 Ԧܽఝ.	
Again,	 the	 positive	 directions	 of	 the	 three	 coordinates	 is	 chosen	 to	 form	 a	 right‐
handed	system	in	the	r‐θ‐φ‐r	order,	Figure	3.17. 

	
Figure	3.16	

	
Figure	3.17	

For	 integration	 purposes,	 incremental	 elements	 at	 p	 correspond	 to	 increasing	 the	
coordinate	values	r,	θ,	and	φ	by	Δr,	Δθ,	and	Δφ,	respectively,	Figure	3.18.	The	side	
lengths	 of	 the	 corresponding	 incremental	 “rectangular”	 prism	 are	 Δr,	 rΔθ,	 and	
rsin(θ)Δφ,	respectively.		The	corresponding	incremental	volume	is	the	product	of	all	
three	sides	Δv=	Δr	rΔθ	rsin(θ)Δφ.	
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Figure	3.18	

The	vector	 representation	of	 the	 three	 incremental	 lengths	 is	given	 in	Figure	3.19	
while	the	corresponding	three	incremental	surface	area	vectors	are	shown	in	Figure	
3.20.	Needless	to	say,	all	three	unit	vectors	 Ԧܽ௥, Ԧܽఏ, ܽ݊݀	 Ԧܽఝ	are	variable	vectors	as	they	
all	vary	in	direction	as	we	move	around	in	space.		

	
Figure	3.19	

	
Figure	3.20	

Relationships	between	Coordinate	Systems:	

Frequently,	in	the	course	of	analytical	procedures,	we	would	be	faced	with	the	need	
to	convert	from	one	coordinate	system	to	another.		Typically,	the	conversion	would	
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be	needed	between	Cylindrical	and	Cartesian	and	between	Spherical	and	Cartesian.		
In	some	cases	this	is	needed	for	convenience	in	carrying	out	a	“difficult”	integration	
or	 to	 identify	with	 a	 specific	 coordinate‐related	 phenomenon.	 	 However,	 in	many	
cases	it	is	done	to	avoid	dealing	with	variable	unit	vectors.		Converting	to	Cartesian	
coordinates	 replaces	 the	 variable	 unit	 vectors	 with	 constant	 ones	 that	 facilitates	
integration	procedures	involving	vectors.	

Examining	 Figures	 3.9	 and	 3.10	 for	 Cylindrical	 coordinates	 and	 3.14	 and	 3.15	 for	
Spherical	 coordinates,	 we	 can	 write	 down	 the	 relationships	 for	 the	 coordinate	
parameters	and	the	corresponding	unit	vectors	as	laid	down	in	the	tables	below.	

Table	3.1	‐	Coordinate	Relations	

Cylindrical	–	Cartesian	 Spherical	– Cartesian Cylindrical	‐ Spherical	

ߩ ൌ ඥݔଶ ൅  ଶݕ
߮ ൌ  ሻݔ/ݕଵሺି݊ܽݐ
ݖ ൌ  ݖ

ݎ ൌ ඥݔଶ ൅ ଶݕ ൅ ଶݖ

ߠ ൌ  ሻݎ/ݖଵሺିݏ݋ܿ
߮ ൌ ሻݔ/ݕଵሺି݊ܽݐ

ߩ ൌ ݎ ݊݅ݏ ߠ
߮ ൌ ߮ 
ݖ ൌ ݎ ݏ݋ܿ 	ߠ

ݔ ൌ  ߮	ݏ݋ܿ	ߩ
ݕ ൌ  ߮	݊݅ݏ	ߩ
ݖ ൌ  ݖ

ݔ ൌ ݏ݋ܿ	ߠ	݊݅ݏ	ݎ ߮
ݕ ൌ ݊݅ݏ	ߠ	݊݅ݏ	ݎ ߮ 
ݖ ൌ  		ߠ	ݏ݋ܿ	ݎ

ݎ ൌ ඥߩଶ ൅ ଶݖ

ߠ ൌ  ሻݎ/ݖଵሺିݏ݋ܿ
߮ ൌ ߮

	
Table	3.2	‐	Unit	vectors	Relations	

Cylindrical	–	Cartesian	 Spherical	– Cartesian Cylindrical	‐ Spherical	

ܽఘሬሬሬሬԦ ൌ ݏ݋ܿ ߮	ܽ௫ሬሬሬሬԦ ൅ ݊݅ݏ ߮	ܽ௬ሬሬሬሬԦ 
ܽఝሬሬሬሬԦ ൌ െ݊݅ݏ ߮	ܽ௫ሬሬሬሬԦ ൅ ݏ݋ܿ ߮	ܽ௬ሬሬሬሬԦ 
ܽ௭ሬሬሬሬԦ ൌ ܽ௭ሬሬሬሬԦ	

ܽ௥ሬሬሬሬԦ ൌ ݊݅ݏ ߠ ݏ݋ܿ ߮ ܽ௫ሬሬሬሬԦ ൅ ݊݅ݏ ߠ ݊݅ݏ ߮ ܽ௬ሬሬሬሬԦ ൅ ݏ݋ܿ ߠ ܽ௭ሬሬሬሬԦ

ܽఏሬሬሬሬԦ ൌ ݏ݋ܿ ߠ ݏ݋ܿ ߮ ܽ௫ሬሬሬሬԦ ൅ ݏ݋ܿ ߠ ݊݅ݏ ߮ ܽ௬ሬሬሬሬԦ െ ݊݅ݏ ߠ ܽ௭ሬሬሬሬԦ

ܽఝሬሬሬሬԦ ൌ െ݊݅ݏ ߮	ܽ௫ሬሬሬሬԦ ൅ ݏ݋ܿ ߮ ܽ௬ሬሬሬሬԦ

Ԧܽ௥ ൌ Ԧܽఘ ݊݅ݏ ߠ ൅ Ԧܽ௭ ݏ݋ܿ 	ߠ
Ԧܽఏ ൌ Ԧܽఘ ݏ݋ܿ ߠ െ Ԧܽ௭ ݊݅ݏ 	ߠ
ܽఝሬሬሬሬԦ ൌ ܽఝሬሬሬሬԦ	

ܽ௫ሬሬሬሬԦ ൌ ݏ݋ܿ ߮	ܽఘሬሬሬሬԦ െ ݊݅ݏ ߮	ܽఝሬሬሬሬԦ 
ܽ௬ሬሬሬሬԦ ൌ ݊݅ݏ ߮	ܽఘሬሬሬሬԦ ൅ ݏ݋ܿ ߮	ܽఝሬሬሬሬԦ 
ܽ௭ሬሬሬሬԦ ൌ ܽ௭ሬሬሬሬԦ	

ܽ௫ሬሬሬሬԦ ൌ ݊݅ݏ ߠ ݏ݋ܿ ߮ ܽ௥ሬሬሬሬԦ ൅ ݏ݋ܿ ߠ ݏ݋ܿ ߮ ܽఏሬሬሬሬԦ െ ݊݅ݏ ߮ ܽఝሬሬሬሬԦ

ܽ௬ሬሬሬሬԦ ൌ ݊݅ݏ ߠ ݊݅ݏ ߮ ܽ௥ሬሬሬሬԦ ൅ ݏ݋ܿ ߠ ݊݅ݏ ߮ ܽఏሬሬሬሬԦ ൅ ݏ݋ܿ ߮ ܽఝሬሬሬሬԦ
ܽ௭ሬሬሬሬԦ ൌ ݏ݋ܿ ߠ ܽ௥ሬሬሬሬԦ െ ݊݅ݏ ߠ ܽఏሬሬሬሬԦ

Ԧܽఘ ൌ Ԧܽ௥ ݊݅ݏ ߠ ൅ Ԧܽఏ ݏ݋ܿ 	ߠ
Ԧܽ௭ ൌ Ԧܽ௥ ݏ݋ܿ ߠ െ Ԧܽఏ ݊݅ݏ 	ߠ
ܽఝሬሬሬሬԦ ൌ ܽఝሬሬሬሬԦ	

	
Vector	Expressions:	

Also,	for	a	vector	FሬԦ	expressed	in	Cartesian,	Cylindrical	and	Spherical	coordinates	as:	

Ԧܨ ൌ 	௫ܨ Ԧܽ௫ ൅ 	௬ܨ Ԧܽ௬ ൅ 	௭ܨ Ԧܽ௭,	
Ԧܨ ൌ 	ఘܨ Ԧܽఘ ൅ 	ఝܨ Ԧܽఝ ൅ 	௭ܨ Ԧܽ௭,	
Ԧܨ ൌ 	௥ܨ Ԧܽ௥ ൅ 	ఏܨ Ԧܽఏ ൅ 	ఝܨ Ԧܽఝ	

Table	3.3	–	Vector	Expression	Relations	

Cylindrical	to	Cartesian	 Spherical	to	Cartesian
ఘܨ ൌ ௫ܨ ݏ݋ܿ ߮ ൅ ௬ܨ ݊݅ݏ ߮	
ఝܨ ൌ െܨ௫ ݊݅ݏ ߮ ൅ ௬ܨ ݏ݋ܿ ߮	

௭ܨ ൌ 	௭ܨ

௥ܨ ൌ ௫ܨ ߠ݊݅ݏ ߮ݏ݋ܿ ൅ ௬ܨ ߠ݊݅ݏ ߮݊݅ݏ ൅ ௭ܨ ߠݏ݋ܿ
ణܨ ൌ ௫ܨ ߠݏ݋ܿ ߮ݏ݋ܿ ൅ ௬ܨ ߠݏ݋ܿ ߮݊݅ݏ െ ௭ܨ ߠ݊݅ݏ

ఝܨ ൌ െܨ௫ ߮݊݅ݏ ൅ ௬ܨ ߮ݏ݋ܿ

௫ܨ ൌ ߮ݏ݋ܿ	ఘܨ െ ఝܨ ݊݅ݏ ߮	
௬ܨ ൌ െܨఘ	߮݊݅ݏ ൅ ఝܨ ݏ݋ܿ ߮	

௭ܨ ൌ 	௭ܨ

௫ܨ ൌ ௥ܨ ߠ݊݅ݏ ߮ݏ݋ܿ ൅ ఏܨ ߠݏ݋ܿ ߮ݏ݋ܿ െ ఝܨ ߮݊݅ݏ
௬ܨ ൌ ௥ܨ ߠ݊݅ݏ ߮݊݅ݏ ൅ ఏܨ ߠݏ݋ܿ ߮݊݅ݏ ൅ ఝܨ ߮ݏ݋ܿ

௭ܨ ൌ ௥ܨ ߠݏ݋ܿ െ ఏܨ ߠ݊݅ݏ

	

	

 

	 	



	

Chapter	III	–	Transition	to	EM	EM	Fields	&	Waves	–	2014	‐	Sedki	Riad	 Page	13	of	26	

Addendum	II	

Vector	Calculus	

Vector	Definition	and	Examples:	

A	vector	 is	 a	quantity	 characterized	by	having	a	 specific	magnitude	 and	a	 specific	
direction	at	each	point	in	space.		In	this	book	will	use	the	accented	notation	to	denote	
vector,	 e.g.,	 a	 vector	 “F”	 will	 appear	 as	 	.Ԧܨ 	 A	 vector	 can	 be	 expressed	 as	 a	 scalar	
multiplied	by	a	unit	vector	that	has	the	same	direction	as	the	vector	itself:	

Ԧܨ ൌ 	ܨ Ԧܽி	

Examples	of	vectors	include	distance,	velocity,	and	force	among	many	other	physical	
quantities.		The	following	table	demonstrates	some	of	these	vector	quantities.	

Table	3.4	–	Examples	of	Vectors	

Vector	 Examples

Length	

Velocity	

Weight	

Surface	Area	

Force	

Torque	
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Vector	Representations	in	Coordinate	Systems:	

To	express	a	vector	in	a	coordinate	system	is	to	write	the	vector	in	terms	of	the	three	
orthonormal	components	of	that	coordinate	system.		This	is	done	by	projecting	the	
vector	along	the	three	directions	of	the	coordinate	system	and	finding	the	magnitude	
of	 each	 projection.	 	 If	 we	 denote	 the	 three	 projections	 of	 a	 vector	 FሬԦ	 along	 the	 3	
coordinates	of	a	“1‐2‐3”	coordinate	system	as	F1,	F2,	and	F3,	respectively,	then	we	
can	write:	

Ԧܨ ൌ Ԧଵܨ ൅ Ԧଶܨ ൅ Ԧଷܨ ൌ 	ଵܨ Ԧܽଵ ൅ 	ଶܨ Ԧܽଶ ൅ 	ଷܨ Ԧܽଷ	 ሺ3.1ሻ	

where	 	 Ԧܽଵ, 	 Ԧܽଵ, ܽ݊݀		 Ԧܽଵ	are	the	corresponding	unit	vectors	of	the	coordinate	system,	
Figure	3.21.	

	
Figure	3.21	

In	 the	 following,	 we	 will	 overview	 vector	 representation	 in	 the	 three	 coordinate	
systems.		Two	types	of	vectors	will	be	demonstrated;	distance	vectors	and	others.	The	
reason	 for	 this	classification	 is	 that	distance	vectors	are	expressed	 in	 terms	of	 the	
coordinate	 system	dimensions	 and	 directions	while	 the	 others	will	 have	 different	
units	but	only	expressed	in	terms	of	the	coordinate	system	directions.	

Vector	Representation	in	a	Cartesian	coordinate	system 

	
Figure	3.22	

Figure	 3.22	 shows	 two	 types	 of	 distance	 vectors	 as	 represented	 in	 Cartesian	
coordinates;	distance	from	the	origin	and	distance	between	two	points.	The	distance	
from	the	origin	vector	which	we	denote	with	the	lower	case	r	is	in	fact	the	same	as	
the	Spherical	coordinate	vector	ݎԦ	which	can	be	written	as:			

Ԧݎ ൌ ௫ሬሬሬሬԦܽ	ݔ ൅ ௬ሬሬሬሬԦܽ	ݕ ൅  ௭ሬሬሬሬԦ (3.2)ܽ	ݖ

The	distance	between	two	points	(1	and	2)	will	be	denoted	by	the	upper	case	vector	 ሬܴԦ.		
This	can	be	expressed	as	the	difference	between	two	rԦ	vectors	as	follows:	
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ܴଵଶሬሬሬሬሬሬԦ ൌ ଶሬሬሬԦݎ െ ଵሬሬሬԦݎ	 ൌ ൫ݔଶ	ܽ௫ሬሬሬሬԦ ൅ ܽ௬ሬሬሬሬԦ	ଶݕ ൅ ܽ௭ሬሬሬሬԦ൯	ଶݖ െ ൫ݔଵ	ܽ௫ሬሬሬሬԦ ൅ ܽ௬ሬሬሬሬԦ	ଵݕ ൅ ܽ௭ሬሬሬሬԦ൯	ଵݖ ൌ ሺݔଶ െ ܽ௫ሬሬሬሬԦ	ଵሻݔ ൅
ሺݕଶ െ ܽ௬ሬሬሬሬԦ	ଵሻݕ ൅ ሺݖଶ െ  ܽ௭ሬሬሬሬԦ (3.3)	ଵሻݖ

Vector	representation	for	a	general	form	vector	

Next,	we	 view	 the	 vector	 representation	 for	 a	 general	 form	 vector	 	Ԧܨ in	 Cartesian	
coordinates.		This	is	demonstrated	in	Figure	3.23	yielding	the	analytical	expression:	

Ԧܨ ൌ Ԧ௫ܨ ൅ Ԧ௬ܨ ൅ Ԧ௭ܨ ൌ 	௫ܨ Ԧܽ௫ ൅ 	௬ܨ Ԧܽ௬ ൅ 	௭ܨ Ԧܽ௭	 ሺ3.4ሻ	

	
Figure	3.23	

Vector	Representation	in	Cylindrical	coordinates	

	
Figure	3.24	

Figure	3.24	 shows	 the	 two	 types	of	distance	vectors	as	 represented	 in	Cylindrical	
coordinates.	The	distance	from	the	origin	vector	ݎԦ	can	be	written	as:			

Ԧݎ ൌ ఘሬሬሬሬԦܽ	ߩ ൅  ௭ሬሬሬሬԦ (3.5)ܽ	ݖ

It	is	to	be	noted	here	that	the	ܽఘሬሬሬሬԦ	unit	vector	is	a	variable	one	which	may	cause	some	
analytical	 challenges	 in	 some	 cases	 especially	when	 integration	 is	 involved.	When	
these	challenges	dominate,	 it	may	be	“wiser”	to	switch	to	the	Cartesian	coordinate	
representation	where	all	the	unit	vectors	are	constants.	
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The	distance	vector	ܴଵଶሬሬሬሬሬሬԦ		between	two	points	is	also	demonstrated	in	the	figure.	When	
expressed	as	the	difference	between	two	rԦ	vectors	we	be	challenged	by	the	vector	
subtraction	of		ܽఘଶሬሬሬሬሬሬԦ	ܽ݊݀	ܽఘଵሬሬሬሬሬሬԦ:	

ܴଵଶሬሬሬሬሬሬԦ ൌ ଶሬሬሬԦݎ െ ଵሬሬሬԦݎ	 ൌ ൫ߩଶ	ܽఘଶሬሬሬሬሬሬԦ ൅ ܽ௭ሬሬሬሬԦ൯	ଶݖ െ ൫ߩଵ	ܽఘଵሬሬሬሬሬሬԦ ൅ ܽ௭ሬሬሬሬԦ൯	ଵݖ ൌ ൫ߩଶ	ܽఘଶሬሬሬሬሬሬԦ െ ܽఘଵሬሬሬሬሬሬԦ൯	ଵߩ ൅ ሺݖଶ െ
ܽ௭ሬሬሬሬԦ	ଵሻݖ ൌ ሺݔଶ െ ܽ௫ሬሬሬሬԦ	ଵሻݔ ൅ ሺݕଶ െ ܽ௬ሬሬሬሬԦ	ଵሻݕ ൅ ሺݖଶ െ  ܽ௭ሬሬሬሬԦ (3.6)	ଵሻݖ

Again	 resorting	 to	 Cartesian	 coordinates	 offers	 a	 simple	 way	 to	 deal	 with	 this	
challenge.	

Similarly,	 the	general	 form	vector	 	Ԧܨ in	Cylindrical	 coordinates	 is	 demonstrated	 in	
Figure	3.25.		This	corresponding	analytical	expression	is:	

Ԧܨ ൌ ଶሬሬሬԦܨ െ ଵሬሬሬԦܨ	 ൌ ൫ܨଶఘ	ܽఘଶሬሬሬሬሬሬԦ ൅ ܽ௭ሬሬሬሬԦ൯	ଶ௓ܨ െ ൫ܨଵఘ	ܽఘଵሬሬሬሬሬሬԦ ൅ ܽ௭ሬሬሬሬԦ൯	ଵ௓ܨ ൌ ൫ܨଶఘ	ܽఘଶሬሬሬሬሬሬԦ െ ܽఘଵሬሬሬሬሬሬԦ൯	ଵఘܨ ൅

ሺܨଶ௓ െ ܽ௭ሬሬሬሬԦ	ଵ௓ሻܨ ൌ ܽ௫ሬሬሬሬԦ	௫ܨ ൅ ܽ௬ሬሬሬሬԦ	௬ܨ ൅ 	ܽ௭ሬሬሬሬԦ	௭ܨ ሺ3.7ሻ	

	
Figure	3.25	

Vector	Representation	in	Spherical	coordinates	

The	 case	 of	 Spherical	 coordinates,	 Figure	 3.26,	 has	 challenges	 similar	 to	 those	
discussed	 in	Cylindrical	coordinate	representation;	all	3	unit	vectors	are	variables.	
Switching	to	Cartesian	offers	the	same	convenience	as	discussed	above.	

Ԧܨ ൌ ଶሬሬሬԦܨ െ ଵሬሬሬԦܨ	 ൌ ܽ௫ሬሬሬሬԦ	௫ܨ ൅ ܽ௬ሬሬሬሬԦ	௬ܨ ൅  ܽ௭ሬሬሬሬԦ (3.8)	௭ܨ

	
Figure	3.26	
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Vector	Operations	

The	 following	 table	 reviews	 various	 vector	 operations,	 gives	 examples	 of	 their	
graphical	 and	 physical	 applications,	 as	 well	 as	 their	 representations	 in	 the	 three	
coordinate	systems.		The	“red‐bold”	terms	in	the	expressions	below	indicate	cases	
where	 variable	 vectors	 present	 mathematical	 challenges.	 	 In	 such	 cases,	 we	 may	
resort	 to	 the	 Cartesian	 representation	 where	 the	 unit	 vectors	 have	 constant	
directions	at	all	times.	

Table	3.5	–	Vector	Addition	and	Subtraction	

A
dd
it
io
n	
&
	

Su
bt
ra
ct
io
n	

			 Ԧܣ	 േ ሬԦܤ ൌ േ ሬԦܤ ൅ Ԧܣ 			 	
Cartesian	 Ԧܣ േ ሬԦܤ ൌ ܽ௫ሬሬሬሬԦ	௫ܣ ൅ ௬ܣ ܽ௬ሬሬሬሬԦ ൅ ௭ܣ ܽ௭ሬሬሬሬԦ േ ൫ܤ௫ ܽ௫ሬሬሬሬԦ ൅ ௬ܤ ܽ௬ሬሬሬሬԦ ൅ ௭ܤ ܽ௭ሬሬሬሬԦ൯

ൌ ሺܣ௫ േ ௫ሻܤ ܽ௫ሬሬሬሬԦ ൅ ൫ܣ௬ േ ௬൯ܤ ܽ௬ሬሬሬሬԦ ൅ ሺܣ௭ േ ௭ሻܤ ܽ௭ሬሬሬሬԦ	

Cylindrical	 Ԧܣ േ ሬԦܤ ൌ ൫ܣఘ ܽఘ஺ሬሬሬሬሬሬԦ ൅ ௭ܣ ܽ௭ሬሬሬሬԦ൯ േ ൫ܤఘ ܽఘ஻ሬሬሬሬሬሬԦ ൅ ௭ܤ ܽ௭ሬሬሬሬԦ൯
ൌ ൫࡭࣋ࢇ࣋࡭ሬሬሬሬሬሬሬԦ േ ሬሬሬሬሬሬሬԦ൯࡮࣋ࢇ࣋࡮ ൅ ሺܣ௭ േ 	௭ሻܽ௭ሬሬሬሬԦܤ

ൌ ሺܣ௫ േ ௫ሻܤ ܽ௫ሬሬሬሬԦ ൅ ൫ܣ௬ േ ௬൯ܤ ܽ௬ሬሬሬሬԦ ൅ ሺܣ௭ േ ௭ሻܤ ܽ௭ሬሬሬሬԦ

Spherical	 Ԧܣ േ ሬԦܤ 	ൌ ሺ࡭࢘ࢇ࢘࡭ሬሬሬሬሬሬԦ േ ሬሬሬሬሬሬԦሻ࡮࢘ࢇ࢘࡮ ൌ ሺܣ௫ േ ௫ሻܤ ܽ௫ሬሬሬሬԦ ൅ ൫ܣ௬ േ ௬൯ܤ ܽ௬ሬሬሬሬԦ ൅ ሺܣ௭ േ ௭ሻܤ ܽ௭ሬሬሬሬԦ

	
Table	3.6	–	Vector	Scaling	

Sc
al
in
g	

	
Cartesian	 ሬሬሬሬԦ࢞ࢇ	࢞࡭൫	ࢉ ൅ ࢟࡭ ሬሬሬሬԦ࢟ࢇ ൅ ࢠ࡭ ሬሬሬሬԦ൯ࢠࢇ ൌ ࢞࡭ࢉ ሬሬሬሬԦ࢞ࢇ ൅ ࢟࡭ࢉ ሬሬሬሬԦ࢟ࢇ ൅ ࢠ࡭ࢉ ሬሬሬሬԦࢠࢇ

Cylindrical	 ఘܣ൫	ࢉ ܽఘሬሬሬሬԦ ൅ ௭ܣ ܽ௭ሬሬሬሬԦ൯ ൌ ࣋࡭ࢉ ሬሬሬሬԦ࣋ࢇ ൅ ࢠ࡭ࢉ ܽ௭ሬሬሬሬԦ

Spherical	 ܿ ൫ܣ௥ ܽ௥ሬሬሬሬԦ൯ ൌ ௥ܣܿ ܽ௥ሬሬሬሬԦ

	
Table	3.7	–	Vector	Dot	Product	

Sc
al
ar
	ሺ
D
ot
ሻ	
Pr
od
uc
t	 W	ൌ	Work	Done	by force Ԧܨ ݃݊݋݈ܽ ݄݁ݐ ݄ݐܽ݌ ℓሬԦ

	 	ܹ ൌ .Ԧܨ ℓሬԦ ൌ ܨ ℓ ܹ ൌ .Ԧܨ ℓሬԦ ൌ ܨ ℓி	

	 I	ൌ	Current	flow	through the	surface	 Ԧܵ ݁ݑ݀ ࢕ݐ ࢇࢋ࢘ࢇ ࢚࢟࢏࢙࢔ࢋࢊ Ԧࡶ

ܫ	 ൌ .Ԧܬ Ԧܵ ൌ ܬ ܵ ܫ	 ൌ .Ԧܬ Ԧܵ ൌ ܬ ௃ܵ	
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	 Ԧܣ ∙ ሬԦܤ ൌ ሾܣ஻ሿ ܤ ൌ ܣൣ ሻ൧ߙሺݏ݋ܿ ܤ ൌ ܣ ܤ  ሻߙሺݏ݋ܿ

Ԧܣ ∙ ሬԦܤ ൌ ܣ ሾܤ஺ሿ ൌ ܣ ܤൣ ሻ൧ߙሺݏ݋ܿ ൌ ܣ ܤ  ሻߙሺݏ݋ܿ

Ԧܣ ∙ ሬԦܤ ൌ ௫ܤ௫ܣ ൅ ௬ܣ௬ܣ ൌ ሺ߮஻ሻݏ݋ܿ	ܤሺ߮஺ሻݏ݋ܿ	ܣൣ ൅ ሺ߮஻ሻ൧݊݅ݏ	ܤሺ߮஺ሻ݊݅ݏ	ܣ
ൌ ሺ߮஻ሻݏ݋ሺ߮஺ሻܿݏ݋ሾܿ	ܤ	ܣ ൅ ሺ߮஻ሻሿ݊݅ݏሺ߮஺ሻ݊݅ݏ ൌ ሺ߮஻െ߮஺ሻሿݏ݋ሾܿܤܣ
ൌ ሻߙሺݏ݋ܿ	ܤ	ܣ

Cartesian	 Ԧܣ ∙ ሬԦܤ ൌ ൫ܣ௫	ܽ௫ሬሬሬሬԦ ൅ ܽ௬ሬሬሬሬԦ	௬ܣ ൅ ௭ܣ ܽ௭ሬሬሬሬԦ൯ ∙ ൫ܤ௫ ܽ௫ሬሬሬሬԦ ൅ ௬ܤ ܽ௬ሬሬሬሬԦ ൅ ௭ܤ ܽ௭ሬሬሬሬԦ൯ ൌ ௫ܣ ௫ܤ ൅ ௬ܣ ௬ܤ ൅ ௭ܣ 	௭ܤ

Cylindrical	 Ԧܣ ∙ ሬԦܤ ൌ ൫ܣఘ	ܽఘ஺ሬሬሬሬሬሬԦ ൅ ௭ܣ ܽ௭ሬሬሬሬԦ൯ ∙ ൫ܤఘ ܽఘ஻ሬሬሬሬሬሬԦ ൅ ௭ܤ ܽ௭ሬሬሬሬԦ൯ ൌ ሬሬሬሬሬሬሬԦ࡭࣋ࢇఘ൫ܤఘܣ ∙ ሬሬሬሬሬሬሬԦ൯࡮࣋ࢇ ൅ ௭ܣ 	௭ܤ

Spherical	 Ԧܣ ∙ ሬԦܤ ൌ ൫ܣ௥ ܽ௥஺ሬሬሬሬሬሬԦ൯ ∙ ൫ܤ௥ ܽ௥஻ሬሬሬሬሬሬԦ൯ ൌ ሬሬሬሬሬሬԦ࡭࢘ࢇ௥ሺܤ௥ܣ ∙ 	ሬሬሬሬሬሬԦሻ࡮࢘ࢇ

	
Table	3.8	–	Vector	Cross	Product	

V
ec
to
r	
(C
ro
ss
)	
P
ro
du
ct
	

ሬܶԦ	ൌ	Torque	vector due	to	a force	ܨԦ ܽ݊݀ ܽ݊ ݉ݎܽ Ԧ݀

ሬܶԦ ൌ Ԧܨ ൈ Ԧ݀ ൌ ܨ ݀ ܽ௡ሬሬሬሬԦ ሬܶԦ ൌ Ԧܨ ൈ Ԧ݀ ൌ ܨ ݀௢ ܽ௡ሬሬሬሬԦ

	

ሬሬԦࡿ ൌ	Area	vector of	a parallelogram	with	sides	 ሬሬԦݓ ܽ݊݀ ℓሬԦ

Ԧܵ ൌ ℓሬԦ ൈ ሬሬԦݓ ൌ ℓ ݓ ܽ௡ሬሬሬሬԦ Ԧܵ ൌ ℓሬԦ ൈ ሬܾԦ ൌ ℓ ܾ௢ܽ௡ሬሬሬሬԦ
	

Ԧܣ ൈ ሬԦܤ ൌ ሾܣ௢ሿ	ܤ	ܽ௡ሬሬሬሬԦ ൌ ௡ሬሬሬሬԦܽ	ܤ	ሻ൧ߙሺ݊݅ݏ	ܣൣ ൌ  ܽ௡ሬሬሬሬԦ	ሻߙሺ݊݅ݏ	ܤ	ܣ

Ԧܣ ൈ ሬԦܤ ൌ ܽ௡ሬሬሬሬԦ	௢ሿܤሾ	ܣ ൌ ܽ௡ሬሬሬሬԦ	ሻ൧ߙሺ݊݅ݏ	ܤൣ	ܣ ൌ  ܽ௡ሬሬሬሬԦ	ሻߙሺ݊݅ݏ	ܤ	ܣ

Ԧܣ ൈ ሬԦܤ ൌ ܽ௡ሬሬሬሬԦ	௬ܤ௫ܣൣ ൅ ௫ሺെܽ௡ሬሬሬሬԦሻ൧ܤ௬ܣ ൌ ሺ߮஻ሻ݊݅ݏܤሺ߮஺ሻݏ݋ܿ	ܣൣ െ ܽ௡ሬሬሬሬԦ	ሺ߮஻ሻ൧ݏ݋ܿ	ܤሺ߮஺ሻ݊݅ݏ	ܣ

ൌ ܤ	ܣ ሾܿݏ݋ሺ߮஺ሻ݊݅ݏሺ߮஻ሻ െ ሺ߮஻ሻሿݏ݋ሺ߮஺ሻܿ݊݅ݏ ܽ௡ሬሬሬሬԦ
ൌ ሺ߮஻െ߮஺ሻሿ݊݅ݏሾܤܣ ܽ௡ሬሬሬሬԦ ൌ ܣ ܤ ሻߙሺ݊݅ݏ ܽ௡ሬሬሬሬԦ

	 Ԧܣ ൈ Ԧܣ ൌ Ԧܣ			,			0 ൈ ሬԦܤ ൌ െܤሬԦ ൈ 	Ԧܣ

Cartesian	 ܽ௫ሬሬሬሬԦ ൈ ܽ௬ሬሬሬሬԦ ൌ ܽ௭ሬሬሬሬԦ			,			ܽ௬ሬሬሬሬԦ ൈ ܽ௭ሬሬሬሬԦ ൌ ܽ௫ሬሬሬሬԦ			,			ܽ௭ሬሬሬሬԦ ൈ ܽ௫ሬሬሬሬԦ ൌ ܽ௬ሬሬሬሬԦ	
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Ԧܣ ൈ ሬԦܤ ൌ ൫ܣ௫	ܽ௫ሬሬሬሬԦ ൅ ܽ௬ሬሬሬሬԦ	௬ܣ ൅ ௭ܣ ܽ௭ሬሬሬሬԦ൯ ൈ ൫ܤ௫ ܽ௫ሬሬሬሬԦ ൅ ௬ܤ ܽ௬ሬሬሬሬԦ ൅ ௭ܤ ܽ௭ሬሬሬሬԦ൯ ൌ ቮ
ܽ௫ሬሬሬሬԦ ܽ௬ሬሬሬሬԦ ܽ௭ሬሬሬሬԦ
௫ܣ ௬ܣ ௭ܣ
௫ܤ ௬ܤ ௭ܤ

ቮ	

Cylindrical	 ܽఘሬሬሬሬԦ ൈ ܽఝሬሬሬሬԦ ൌ ܽ௭ሬሬሬሬԦ			,			ܽఝሬሬሬሬԦ ൈ ܽ௭ሬሬሬሬԦ ൌ ܽఘሬሬሬሬԦ			,			ܽ௭ሬሬሬሬԦ ൈ ܽఘሬሬሬሬԦ ൌ ܽఝሬሬሬሬԦ	

Ԧܣ ൈ ሬԦܤ ൌ ൫ܣఘ	ܽఘ஺ሬሬሬሬሬሬԦ ൅ ܽ௭ሬሬሬሬԦ൯	௭ܣ ൈ ൫ܤఘ ܽఘ஻ሬሬሬሬሬሬԦ ൅ ௭ܤ ܽ௭ሬሬሬሬԦ൯
ൌ ሬሬሬሬሬሬሬԦ࡭࣋ࢇఘ൫ܤఘܣ ൈ ሬሬሬሬሬሬሬԦ൯࡮࣋ࢇ ൅ ൫ܣఘܤ௭ ܽఘ஺ሬሬሬሬሬሬԦ ൈ ܽ௭ሬሬሬሬԦ ൅ ఘܤ௭ܣ ܽ௭ሬሬሬሬԦ ൈ ܽఘ஻ሬሬሬሬሬሬԦ൯
ൌ ሬሬሬሬሬሬሬԦ࡭࣋ࢇఘ൫ܤఘܣ ൈ ሬሬሬሬሬሬሬԦ൯࡮࣋ࢇ ൅ ൫െܣఘܤ௭ ܽఝ஺ሬሬሬሬሬሬሬԦ ൅ ఘܤ௭ܣ ܽఝ஻ሬሬሬሬሬሬሬԦ൯	

Spherical	 ܽ௥ሬሬሬሬԦ ൈ ܽఏሬሬሬሬԦ ൌ ܽఝሬሬሬሬԦ			,			ܽఏሬሬሬሬԦ ൈ ܽఝሬሬሬሬԦ ൌ ܽ௥ሬሬሬሬԦ			,			ܽఝሬሬሬሬԦ ൈ ܽ௥ሬሬሬሬԦ ൌ ܽఏሬሬሬሬԦ	

Ԧܣ ൈ ሬԦܤ ൌ ൫ܣ௥ ܽ௥஺ሬሬሬሬሬሬԦ൯ ൈ ൫ܤ௥ ܽ௥஻ሬሬሬሬሬሬԦ൯ ൌ ሬሬሬሬሬሬԦ࡭࢘ࢇ௥ሺܤ௥ܣ ൈ 	ሬሬሬሬሬሬԦሻ࡮࢘ࢇ
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Addendum	III	

Spatial	Distributions	and	Densities	

In	the	following	we	will	discuss	spatial	distributions	and	densities	of	both	static	and	
dynamic	quantities.	

Static	Distributions	and	Densities	

Static	quantities,	such	as	mass,	charge,	or	energy,	may	exist	in	several	possible	spatial	
distributions,	Figure	3.27:	

1. A	concentration	in	an	infinitesimally	small	volume,	which	we	typically	represent	
as	a	“point”.	

2. A	distribution	over	a	volume	with	infinitesimally	small	cross‐section,	which	we	
typically	represent	as	a	“line”.	

3. A	 distribution	 over	 a	 volume	 with	 infinitesimally	 small	 thickness,	 which	 we	
typically	represent	as	a	“surface”.	

4. A	distribution	over	a	volume	with	non‐zero	dimensions.	

	
Figure	3.27	

These	distributions	may	or	may	not	be	uniform.		To	express	their	spatial	features,	we	
use	appropriate	density	expressions	such	as	volume,	area,	or	 linear	density	of	 the	
quantity	distribution.		Densities	of	static	quantities	are	scalar	in	nature,	i.e.	have	only	
magnitudes	and	do	not	have	directions.	We	will	use	the	subscripted	ρv,	ρS,	and	ρℓ	to	
denote	volume,	area,	and	linear	densities,	respectively.	Hence,	for	the	static	quantity	
Q,	we	can	write	

௩ߩ ൌ
ௗொ

ௗ௩
ௌߩ			,	 ൌ

ௗொ

ௗௌ
ℓߩ	݀݊ܽ			,	 ൌ

ௗொ

ௗℓ
		 ሺ3.9ሻ	

For	 uniform	distributions,	 the	 density	 is	 constant	 at	 all	 the	 distribution	 locations,	
otherwise,	the	density	would	be	a	function	of	position.		Depending	on	the	case,	these	
densities	 may	 or	 may	 not	 have	 physical	 relevance	 and	 their	 definition	 could	 be	
meaningless.		Examples	are	defining	a	volumetric	density	for	a	point	concentration	
where	 the	 volume	 is	 zero,	 or	 defining	 the	 linear	 density	 for	 a	 spherical	 volume	
distribution.		The	following	table	summarizes	the	corresponding	densities	for	the	four	
distribution	forms.	

Table	3.9	–	Static	Distribution	Densities	

Configuration	 Volume	Densityൌ	Quantity	
per	unit	volume	

Surface	Densityൌ
Quantity	per	unit	area

Linear	Densityൌ	
Quantity	per	unit	length	

Point	
Concentration	

Zero	volume	
ρv	ൌ	∞	

Zero	area
ρS ൌ	∞

Zero	length
ρℓ ൌ	∞

Line	
Distribution	

Zero	volume	
ρv	ൌ	∞	

Zero	area
ρS ൌ	∞

ρℓ
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Surface	
Distribution	

Zero	volume	
ρv	ൌ	∞	

ρS ሺAtypical?ሻ

Volume	
Distribution	 ρv	 ሺAtypical?ሻ ሺAtypical?ሻ

	
Conversions	between	static	density	expressions:	

In	 some	 distribution	 configurations,	 more	 than	 one	 form	 of	 density	 can	 be	
simultaneously	defined.		An	example	is	a	cylindrical	volume	distribution	for	which	a	
volumetric	density	can	be	defined	while	a	linear	density	along	the	cylindrical	axis	can	
be	defined	as	well.		For	such	cases,	it	is	useful	to	have	conversion	expressions	between	
the	 different	 forms.	 	 In	 the	 following,	 we	 provide	 examples	 of	 such	 conversion	
relationships.	

Table	3.10	

	 Non	uniform	distribution Uniform	distribution
Sheet	

distribution	

ࡿ࣋ ൌ
ࡽࢊ
ࡿࢊ

	

is	defined	 	

	 ࣋र ൌ
׬ ௪ܵࢊ	ࡿ࣋

∆र
ൌ න ࡿ࣋ ݓࢊ

௪
࣋र ൌ ࡿ࣋ ݓ

Rectangular	
prism	
ሺSlabሻ	

distribution	

࣋࢜ ൌ
ࡽࢊ
࢜ࢊ

	

is	defined	 	

	 ࡿ࣋ ൌ
׬ ௧ݒࢊ	࢜࣋

∆ܵ
ൌ න࣋ࡿ ݐࢊ

௧
ࡿ࣋ ൌ ࡿ࣋ ݐ

	 ࣋र ൌ
׬ ׬ ௧࢝ݒࢊ	࢜࣋

∆र
ൌ න න࣋࢜ ݐࢊ ݓ݀

௧࢝
࣋र ൌ ࣋࢜ ݐ ݓ

Circular	prism	
ሺCylinderሻ		
distribution	

࣋࢜ ൌ
ࡽࢊ
࢜ࢊ

	

is	defined	
	

	 ࣋र ൌ
׬ ௌݒࢊ	࢜࣋

∆र
ൌ න࣋࢜ ܵࢊ

ௌ
࣋र ൌ ࣋࢜ ܵ

	
Dynamic	Distributions	and	Densities:	

Examples	of	dynamic	quantities	include	electric	current,	air	current,	fluid	flow,	and	
energy	 flow.	 Spatial	 distributions	 for	 a	 dynamic	 flow	 can	 only	 exist	 in	 one	 of	 the	
following	forms,	Figure	3.28:	

1. A	stream	distribution	with	infinitesimally	small	cross‐section,	which	we	typically	
represent	as	a	“line	current/flow”.	
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2. A	 stream	 distribution	with	 infinitesimally	 small	 thickness,	which	we	 typically	
represent	as	a	“surface	current	/	laminar	flow”.	

3. A	stream	distribution	with	non‐zero	cross‐sectional	area,	“volume	current/flow”.	

	
Figure	3.28	

These	distributions	may	or	may	not	be	uniform.		To	express	their	spatial	features,	in	
both	magnitude	and	direction,	we	use	appropriate	vector	density	expressions.		

Ԧܬ ൌ
ௗூ

ௗௌ೙
Ԧܽூ					ܽ݊݀					ܭሬሬԦ ൌ

ௗூ

ௗℓ೙
	 Ԧܽூ	 ሺ3.10ሻ	

where	the	n	subscripts	indicate	that	both	dℓ	and	dS	must	be	orthogonal	to	the	flow	
and	 Ԧܽூ	is	the	unit	vector	along	the	current/flow	direction.		For	uniform	distributions,	
the	 densities	 are	 constant	 at	 all	 the	 distribution	 locations,	 otherwise,	 the	 density	
would	be	a	function	of	position.		Again,	depending	on	the	case,	these	densities	may	or	
may	 not	 have	 physical	 relevance	 and	 their	 definition	 could	 be	meaningless.	 	 The	
following	table	summarizes	the	corresponding	densities	for	dynamic	distributions.	

Table	3.11	–	Dynamic	Distribution	Densities	

Configuration	 Area	Densityൌ	Quantity	
per	unit	area

Linear	Densityൌ	Quantity	
per	unit	length

Line	Stream	
Concentration	

Zero	area

Ԧࡶ ൌ	∞
Zero	length

∞	ሬሬሬԦൌࡷ

Surface	Stream	
Distribution	

Zero	area

∞	Ԧൌࡶ ሬሬሬԦࡷ

Volume	Stream	
Distribution	 Ԧࡶ ሺAtypical?ሻ

	
Conversions	between	dynamic	density	expressions:	

In	this	section,	we	demonstrate	the	relationship	between	the	two	forms	of	dynamic	
distribution	densities	in	cases	where	both	can	be	simultaneously	defined.		In	the	table	
below,	 we	 the	 example	 of	 a	 stream	 distribution	 in	 a	 slab	 configuration	 and	 the	
corresponding	conversion	relationships.	

Table	3.12	

	 Non	uniform	distribution Uniform	distribution	n

Slab	Stream	
Flow/Current	

Ԧࡶ ൌ
ࡵࢊ
࢔ࡿࢊ

	ࡵሬሬԦࢇ

is	defined	
ሬሬԦܭ ൌ

׬ ௧ܵ݀	ܬ

ݓ∆
	 Ԧܽூ ൌ නܬ ݐ݀

௧
Ԧܽூ ሬሬԦܭ ൌ ܬ ݐ Ԧܽூ



	

Chapter	III	–	Transition	to	EM	EM	Fields	&	Waves	–	2014	‐	Sedki	Riad	 Page	23	of	26	

Addendum	IV	

Line,	Surface,	and	Volume	Integrations	

Introduction	

In	 the	 course	 of	 this	 book,	 as	we	deal	with	 various	physical	 phenomena,	 analyses	
involving	integration	of	scalar	and	vector	quantities	 is	common.	 	We	often	need	to	
carry	out	contour	(or	line)	integrations,	integrations	over	an	area	of	a	surface,	a	closed	
surface	 as	 well	 as	 volume	 integrations.	 	 Our	 background	 in	 mathematics	 should	
enable	us	to	carry	most	of	these	integrations	once	they	are	set	up	properly.		We	can	
also	resort	to	integration	tables,	computer	software	packages,	or	even	numerical	tools	
for	“difficult”	integrations.		Hence,	in	this	addendum,	we	will	focus	on	two	aspects	of	
the	issue	that	are	often	the	obstacle.	One	is	how	to	set	up	the	integration	equation	
starting	 with	 the	 physical	 problem,	 and	 the	 second	 is	 how	 to	 deal	 with	 vector	
quantities	within	the	integrand.		

The	first	obstacle	of	setting	up	the	integral	is	an	“integral”	part	of	setting	up	the	proper	
mathematical	 model	 of	 the	 physical	 problem.	 	 This	 is	 an	 acquired	 skill	 that	 the	
learners	 in	 this	 field	acquire	with	practice.	 	The	 learner	needs	 to	get	exposed	 to	a	
variety	of	cases	and	a	variety	of	analysis	tools	to	appreciate	what	works	and	what	
does	not	and	when	to	use	a	specific	model	and	what	are	the	constraints	of	that	use.	
Gaining	this	skill	requires	proper	appreciation	to	the	physics	of	the	subject	and	good	
command	of	relevant	mathematical	tools.		This	will	be	demonstrated	and	emphasized	
throughout	the	different	chapters	of	this	book.			

We	now	turn	to	dealing	with	integrations	containing	vector	quantities.		This	will	be	
followed	by	an	overview/survey	of	line,	surface,	and	volume	“scalar”	integrations.	

Integrating	vector	quantities	

To	integrate	vector	quantities	is	simply	performing	vector	summation	of	incremental	
vector	elements.		Since	the	sum	of	vectors	is	controlled	by	the	directions	of	the	vectors	
involved,	the	process	of	vector	integration	must	take	into	account	the	variability	of	
the	direction	of	the	vectors	being	integrated.		Let	us	start	with	a	“sarcastic”	but	true	
statement	by	saying	that	“The	proper	way	of	handling	vector	integration	is	not	to	do	
vector	 integration.”	What	 is	meant	here	 is	 that	we	should	not	start	 the	 integration	
process	before	we	remove	all	vector	quantities	from	within	the	integrand.	

The	process	involves	finding	ways	to	get	all	vector	terms	outside	the	integration	sign	
leaving	only	scalar	quantities	 inside	the	integration.	 	To	extract	a	term	outside	the	
integral	operator,	this	term	must	be	a	constant.		Hence,	what	we	must	do	is	express	
all	 variable‐direction	 vectors	 in	 terms	 of	 fixed‐direction	 vectors	 that	 can	 then	 be	
extracted	outside	the	integration.	Let	us	cite	some	examples	to	demonstrate.	

Example	of	a	Cartesian	coordinate	Integral	

׬ ݔ݀	Ԧݔ ൌݔ׬	 Ԧܽ௫	݀ݔ ൌ Ԧܽ௫ ׬ ݔ݀		ݔ ൌ Ԧܽ௫ ቀ
௫మ

ଶ
൅ ܿቁ	 ሺ3.11ሻ	

׬ ݔ݀	Ԧݕ ൌݕ׬	 Ԧܽ௬	݀ݔ ൌ Ԧܽ௬ ׬ 	ݔ݀		ݕ ሺ3.12ሻ	

Example	of	a	Cylindrical	coordinate	Integral	

ߩ݀	Ԧߩ׬ ൌߩ׬	 Ԧܽఘ	݀ߩ ൌ Ԧܽఘ ׬ ߩ݀		ߩ ൌ Ԧܽఘ ቀ
ఘమ

ଶ
൅ ܿቁ		 ሺ3.13ሻ	

For	an	integration	along	dρ,	the	“ Ԧܽఘ	”	has	a	constant	direction	and	hence	it	is	a	constant	
vector	that	can	be	taken	outside	the	integration.	However	if	the	same	integration	was	
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along	dφ,	 the	“ Ԧܽఘ”	will	vary	as	we	vary	φ	and	hence	“ Ԧܽఘ”	needs	to	be	expressed	 in	
terms	 of	 other	 constant‐direction	 vectors	 to	 be	 able	 to	 carry	 out	 the	 integration.		
Logically,	 we	 use	 the	 Cartesian	 unit	 vectors	 “ Ԧܽ௫, Ԧܽ௬, ܽ݊݀	 Ԧܽ௭"	which	 are	 always	
constant	vectors	in	this	regard,	

׬ ߮݀	Ԧߩ ൌߩ׬	 Ԧܽఘ	݀߮ ൌ ݏ݋൫ܿ	ߩ׬ ߮	ܽ௫ሬሬሬሬԦ ൅ ݊݅ݏ ߮	ܽ௬ሬሬሬሬԦ൯	݀߮ ൌ ݏ݋൫ܿ	ߩ׬ ߮	ܽ௫ሬሬሬሬԦ൯	݀߮ ൅

݊݅ݏ൫	ߩ׬ ߮	ܽ௬ሬሬሬሬԦ൯	݀߮ ൌ ܽ௫ሬሬሬሬԦ ׬ ݏ݋ሺܿ	ߩ ߮ሻ	݀߮ ൅ ܽ௬ሬሬሬሬԦ ׬ ݊݅ݏሺߩ ߮ሻ	݀߮ ൌ ܽ௫ሬሬሬሬԦ	ሺߩ ݊݅ݏ ߮ ൅ ܿଵሻ െ
ܽ௬ሬሬሬሬԦ	ߩ	ሺܿݏ݋ ߮ ൅ ܿଶሻ	 ሺ3.14ሻ	

Adding	the	limits	between	0	and	2π,	this	integration	reduces	to:	

׬ ߮݀	Ԧߩ
ଶగ
଴ ൌ ܽ௫ሬሬሬሬԦ		ߩ ׬ ሺܿݏ݋ ߮ሻ	݀߮

ଶగ
଴ ൅ ܽ௬ሬሬሬሬԦ	ߩ ׬ ሺ݊݅ݏ ߮ሻ	݀߮

ଶగ
଴ ൌ 0	 ሺ3.15ሻ	

This	result	makes	physical	sense	since	adding	the	variable	direction	vector	ߩԦ	around	
a	complete	2π	(360	degrees)	rotation	will	produce	zero	net,	see	Figure	3.29.	

	
Figure	3.29 

Example	of	a	Spherical	coordinate	Integral	

׬ ݎ݀	Ԧݎ ൌ׬ 	ݎ Ԧܽ௥	݀ݎ ൌ Ԧܽ௥ ׬ ݎ݀	ݎ ൌ Ԧܽ௥	ሺݎଶ/2ሻ	 ሺ3.16ሻ	
׬ ߠ݀	Ԧݎ ൌ׬ 	ݎ Ԧܽ௥	݀ߠ ൌ ׬ ݊݅ݏ൫	ݎ ߠ ݏ݋ܿ ߮	ܽ௫ሬሬሬሬԦ ൅ ݊݅ݏ ߠ ݊݅ݏ ߮	ܽ௬ሬሬሬሬԦ ൅
ݏ݋ܿ ߠ ܽ௭ሬሬሬሬԦ൯	݀ߠ ൌܽ௫ሬሬሬሬԦ ׬ ݎ ݊݅ݏ ߠ ݏ݋ܿ ߮ ߠ݀ ൅ ܽ௬ሬሬሬሬԦ ׬ ݎ ݊݅ݏ ߠ ݊݅ݏ ߮ ߠ݀ ൅ ܽ௭ሬሬሬሬԦ ׬ ݎ ݏ݋ܿ ߠ 	ߠ݀ ሺ3.17ሻ	

Integrating	scalar	quantities	

In	this	section,	we	will	survey	a	few	examples	of	line,	surface	and	volume	integrations	
that	we	will	find	relevant	in	the	chapters	ahead.	

Examples	of	Density	Integrations:	

Two	 types	 of	 densities	 are	 reviewed	 here;	 static	 and	 dynamic.	 Examples	 of	 static	
densities	include	mass	and	charge	distributions,	while	examples	of	dynamic	densities	
include	fluid	flow	and	electric	current.		

Static	Linear	Density	

If	ߩℓሺ݊݋݅ݐ݅ݏ݋݌ሻ	 is	 the	 linear	density	of	 the	distribution	of	a	quantity	Q,	we	can	
obtain	 the	 total	 Q	 by	 integrating	 the	 linear	 density	 over	 the	 length	 of	 the	
distribution.		

ܳ ൌ ܳ݀׬ ൌ ׬
ௗொ

ௗℓ
	݀ℓ ൌ 	݀ℓ	ℓߩ׬ ሺ3.18ሻ	

Static	Surface	Density	

If	ߩୗሺ݊݋݅ݐ݅ݏ݋݌ሻ		is	the	surface	density	of	the	distribution	of	a	quantity	Q,	we	can	
obtain	 the	 total	 Q	 by	 integrating	 the	 surface	 density	 over	 the	 area	 of	 the	
distribution.	

ܳ ൌ ܳ݀׬ ൌ ∬
ௗொ

ௗௌ
	݀ܵ ൌ 	ܵ݀	ௌߩ∬ ሺ3.19ሻ	
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Static	Volumetric	Density	

If	ߩ୴ሺ݊݋݅ݐ݅ݏ݋݌ሻ		is	the	volumetric	density	of	the	distribution	of	a	quantity	Q,	we	
can	obtain	the	total	Q	by	integrating	the	volumetric	density	over	the	volume	of	
the	distribution.	

ܳ ൌ ܳ݀׬ ൌ∭
ௗொ

ௗ௩
ݒ݀	 ൌ∭ߩ௩	݀ݒ	 ሺ3.20ሻ	

Dynamic	Linear	Density	

If	ܭℓሺ݊݋݅ݐ݅ݏ݋݌ሻ	is	the	linear	density	of	the	distribution	of	a	current	(flow)	I,	we	
can	obtain	the	total	I	by	integrating	the	linear	density	across	the	cross‐sectional	
length	of	the	distribution.	The	cross‐sectional	length	is	a	length	orthogonal	to	the	
flow	distribution,	Figure	3.30.	

ܫ ൌ ܫ݀׬ ൌ ׬
ௗூ

ௗℓ
	݀ℓ ൌ 	݀ℓ	ℓܭ׬ ሺ3.21ሻ	

	
Figure	3.30	

Dynamic	Surface	Density		

The	total	flow	(current),	I,	flowing	through	a	specific	surface	is	the	integration	of	
the	 flow	 surface	 density	 (J=dI/dS)	 over	 the	 cross‐sectional	 surface	 area	 of	
interest.	 The	 cross‐sectional	 area	 is	 that	 of	 a	 surface	 orthogonal	 to	 the	 flow	
distribution,	Figure	3.31.	

ܫ ൌ ܫ݀׬ ൌ ∬
ௗூ

ௗௌ
	݀ܵ ൌ 	ܵ݀	ܬ∬ ሺ3.22ሻ	

	
Figure	3.31	

Examples	of	Work	and	Energy	Integrations:	

The	work	done	by	a	force	acting	on	an	object	as	it	moves	an	unconstrained	object	
a	certain	distance	(along	the	action	line	of	the	force),	see	Figure	3.32.	

ܹ ൌ ܹ݀׬ ൌ 	ℓ݀	ܨ׬ ሺ3.23ሻ	
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Figure	3.32	

The	total	energy	stored	in	a	specific	volume	is	the	integration	of	the	volumetric	energy	
density	(w=dU/dv)	over	the	volume	of	interest.	

ܷ ൌ ܷ݀׬ ൌ∭
ௗ௎

ௗ௩
ݒ݀	 ൌ∭ݓ	ݒ݀	 ሺ3.24ሻ	

Table	3.13	‐	Examples	of	integrations	in	different	coordinate	systems	

	 Line:	׬ 	रࢊ	ࡲ Surface:	∬ ࡶ ࡿࢊ Volume:	∭࢝ ࢜ࢊ

Ca
rt
es
ia
n
	 නܨሺݔ, ,ݕ 	ݔ݀	ሻݖ ඵܬሺݔ, ,ݕ ሻݖ ݖ݀ݕ݀ මݓሺݔ, ,ݕ ሻݖ ݔ݀ ݕ݀ ݖ݀

නܨሺݔ, ,ݕ 	ݕ݀	ሻݖ ඵܬሺݔ, ,ݕ ሻݖ ݔ݀ݖ݀

නܨሺݔ, ,ݕ 	ݖ݀	ሻݖ ඵܬሺݔ, ,ݕ ሻݖ ݕ݀ݔ݀

Cy
li
nd
ri
ca
l	 නܨሺߩ, ߮, 	ߩ݀	ሻݖ ඵܬሺߩ, ߮, ሻݖ ߮݀ߩ ݖ݀ මݓሺߩ, ߮, ሻݖ ߩ݀ ߮݀ߩ ݖ݀

නܨሺߩ, ߮, 	߮݀	ߩ	ሻݖ ඵܬሺߩ, ߮, ሻݖ ݖ݀ ߩ݀

නܨሺߩ, ߮, 	ݖ݀	ሻݖ ඵܬሺߩ, ߮, ሻݖ ߩ݀ ߮݀ߩ

Sp
he
ri
ca
l	 නܨሺݎ, ,ߠ ߮ሻ	݀ݎ	 ඵܬሺݎ, ,ߠ ߮ሻ ߠ݀ݎ ߠ݊݅ݏݎ ݀߮	 මݓሺݎ, ,ߠ ߮ሻ ݎ݀ ߠ݀ݎ ߠ݊݅ݏݎ ݀߮	

නܨሺݎ, ,ߠ ߮ሻ	ݎ	ߠ݀	 ඵܬሺݎ, ,ߠ ߮ሻ ݎ݀ ߠ݊݅ݏݎ ݀߮

නܨሺݎ, ,ߠ ߮ሻ	ݎ	ߠ݊݅ݏ	݀߮	 ඵܬሺݎ, ,ߠ ߮ሻ ݎ݀ ߠ݀ݎ
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