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Transmission	Lines	‐	Wave	Equations	

 Time	Domain	Bounce	Diagram

 Addendum	D:	The	Time	Domain	Bounce	Diagram	

o Time	Domain	Bounce	Diagram	for	Lossless	Lines	and	Resistive	Discontinuities 

o Time	Domain	Reflectometry	and	the	Bounce	Diagram	 

o Time	Domain	Reflectometry	for	Ideal	Step	Waveform	Excitations	 

o Time	Domain	Reflectometry	for	Ideal	Dirac‐Delta	Impulse	Waveform	Excitations 

o Time	Domain	Bounce	Diagram 

	
In	this	lecture,	we	continue	to	further	our	exploration	of	the	physics	of	the	multiple	
reflections/standing	waves	in	mismatched	TL	networks.	Last	lecture,	we	carried	the	
analysis	of	the	bounce	diagram	in	the	frequency	domain.		This	lecture,	we	will	learn	
about	the	time	domain	version	of	the	bounce	diagram.	

Again,	we	will	consider	the	simple	case	of	impedance	mismatches	at	both	the	source	
and	 load	 ends;	 hence,	 for	which	multiple	wave	 reflections	 occur	 on	 the	 line	with	
waves	 bouncing	 back	 and	 forth	 between	 its	 mismatched	 ends.	 	 (Same	 case	
demonstrated	earlier	in	Figure	2.17)		

	
Figure	2.17	

The	Time	Domain	Bounce	Diagram	

The	Time	Domain	Bounce	Diagram:	

When	we	discussed	the	bounce	diagram	in	the	frequency	domain,	we	were	thinking	
of	harmonic	signals	traveling	back	and	forth	on	the	line	(in	the	steady	state).	Although	
we	were	discussing	a	steady	state,	we	used	a	“transient”	approach	to	construct	the	
steady	 state	 answer.	 	 To	do	 the	 same	 exact	 thing	 in	 the	 time	domain,	 i.e.,	 use	 the	
transient	approach	to	construct	the	time	domain	steady	state	answer,	we	will	be	limit	
the	discussion	to	the	lossless	line	case.		This	is	because	the	time	domain	analysis	of	
lossy	lines	gets	beyond	our	mathematical	capabilities	and	our	interest	at	this	point.			
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Two	main	 advantages	 to	working	 the	bounce	diagram	 in	 the	 time	domain	are	 the	
following:		First,	is	the	ability	to	work	out	transients	of	non‐harmonic	signals	in	simple	
expressions	 (only	 for	 lossless	 lines).	 	 The	 second	 reason	 is	 related	 to	 practical	
application	 in	 time	domain	 reflectometry	 (including	practical	 transmission	media,	
which	are	not	lossless).	

In	time	domain	reflectometry,	a	pulse	is	launched	in	a	transmission	medium	and	its	
reflections	are	monitored.		The	delay	of	the	reflected	signals	is	used	to	determine	the	
distance	(and	hence	location)	of	the	medium	discontinuity	that	caused	the	reflection.	
Meanwhile,	the	nature	of	the	reflection	(waveform)	can	be	used	to	reveal	information	
about	 the	 nature	 of	 the	 discontinuity.	 Practical	 devices	 are	 built	 around	 these	
concepts	in	many	application	fields.		Among	those	devices	are	RADARS	that	are	used	
to	locate,	monitor,	and	identify	airplanes	and	other	flying	objects.		Sonars	are	other	
devices	that	have	applications	in	medical	applications	as	well	as	beneath	the	earth	
explorations.		The	most	direct	application	in	transmission	lines	is	the	Time	Domain	
Refelctometer,	TDR,	used	for	cable	testing	and	fault	location.		The	optical	version	of	
that	 is	 called	 OTDR	 (Optical	 Time	 Domain	 Refelctometer)	 which	 is	 used	 for	 fiber	
cables.	

With	this	background	in	mind,	we	can	see	the	importance	of	discussing	time	domain	
bounce‐diagrams	 even	 though	 we	 will	 limit	 the	 analysis	 to	 lossless	 media.	
Furthermore,	we	will	initially	confine	our	discussion	to	pure	resistive	discontinuities	
including	the	source	and	load	“impedances”.	

Time	Domain	Bounce	Diagram	for	Lossless	Lines	and	Resistive	Discontinuities:	

In	this	discussion	we	will	be	working	with	the	signals	in	their	time	domain	form,	and	
hence,	we	will	be	using	the	lower	case	notations,	v(z,	t)	and	i(z,	t).		Furthermore,	we	
will	 be	 dealing	 with	 time	 domain	 (local/instantaneous)	 reflection	 coefficients	 for	
which	we	will	use	the	notation	ρ	instead	of	Γ.		This	local	reflection	coefficient	can	only	
be	 found	 at	 the	 discontinuities	 at	 the	 instant	 the	 “incident”	 signal	 reaches	 that	
discontinuity.		This	concept	is	demonstrated	in	Figure	2.31.		At	any	instance	of	time,	
and	 in	 locations	 with	 no	 discontinuities,	 only	 one	 signal	 may	 exist.	 	 However,	 at	
discontinuity	 locations,	 reflections	 off	 the	 discontinuity	 result	 in	 two	 coexisting	
signals,	the	incident	signal,	and	its	reflection.	

	
	Figure	2.31	

Now,	consider	the	setup	shown	in	Figure	2.32	with	a	source	and	load	as	shown.		Both	
source	and	load	impedances	ሺܴௌ	ܽ݊݀	ܴ௅ሻ	are	purely	resistive.		The	transmission	line	
connecting	 the	 two	 sides	 is	 assumed	 lossless,	 and	 hence	 has	 a	 pure	 resistive	
characteristic	 impedance	ܴ௢.	 Consequently,	 we	 can	 write	 the	 local	 reflection	
coefficients	at	the	source	and	load	ends	of	the	line	as:	
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௦ߩ ൌ
ሾோೞିோ೚ሿ

ሾோೞାோ೚ሿ
௅ߩ			݀݊ܽ			 ൌ

ሾோಽିோ೚ሿ

ሾோಽାோ೚ሿ
	 ሺ2.96ሻ	

	
Figure	2.32	

Also,	the	initial	launch	ܽሺݐሻ ൌ ݖሺݒ ൌ 0, ݐ ൌ 0ሻ	can	be	written	as	the	voltage	divider	of	
vs(t)	between	the	line’s	characteristic	resistance	(impedance),	Ro,	and	the	source’s	
resistance,	Rs,	see	Figure	2.33:	

ܽሺݐሻ ൌ ሺ0ሻ|௧ୀ଴ݒ ൌ ௦ݒ
ோ೚

ሾோೞାோ೚ሿ
	 ሺ2.97ሻ	

	
Figure	2.33	

Now,	we	can	construct	the	time‐domain	bounce	diagram	as	we	follow	the	signal	travel	
(delay)	and	reflect	(and	transmit)	at	discontinuities	(load	and	source	resistances).		As	
discussed	 earlier,	 Equation	 (2.40),	 the	 time	 delay	 corresponding	 to	 a	 distance	
travelled	is	given	by	τdistance=distance/c௣௛.			

Using	the	notation,	τ	=	ℓ/cph,	τz	=	z/cph,	and	τd	=	(ℓ‐z)/cph,	the	first	positive	z	waveform	
is	the	initial	launch	a(t)	which	becomes	a(t‐	τz)	after	traveling	a	distance	z	and	a(t‐	τ)	
at	the	load.	The	first	reflection	at	the	load	yields	[ρL].[a(t‐	τ)]	as	the	first	negative	z	
traveling	wave.	This	reflection	travels	back	towards	the	source	experiencing	further	
delays	to	arrive	at	the	source	after	a	delay	of	2ℓ/cph	=	2τ,	and	hence	can	be	written	as	
[ρL].[a(t‐	 2τ)].	 Reflecting	 from	 the	 source,	 a	 second	 positive	 z	 travel	 is	 initiated	
through	a	reflection	coefficient	of	 [ρs].	 	This	signal	 is	thus	 initiated	as	[ρs].[ρL].[a(t‐	
2τ)]	and	travels	towards	the	load	accumulating	more	delays.	The	multiple	reflections	
go	back	 and	 forth	with	 further	 delays	 (time	 shift)	 of	 distance/c௣௛	 and	amplitudes	
changing	by	the	reflection	coefficients	multipliers	[ρs]	and	[ρL].			

Now,	we	examine	the	transmission	(through)	waveforms	that	take	place	at	the	load	
and	 the	 source	 ends	 upon	 each	 reflection.	 Upon	 the	 arrival	 of	 the	 signal	 at	 the	
discontinuity,	a	reflection	voltage	develops	at	that	discontinuity	in	the	form	of	[ρs	or	
L].[incident	 voltage].	 	 The	 total	 voltage	 at	 that	 location	 is	 then	 equal	 to	 [incident	
voltage]+[ρs	 or	 L].[incident	 voltage]=[1+ρs	 or	 L].[incident	 voltage].	 	 	 	 This	 voltage	
transmits	to	the	other	side	of	the	discontinuity	whether	it	is	the	source	or	the	load.		
Consequently,	the	first	arrival	signal	to	the	load	side	is	of	the	form	[a(t‐	τ)]+[ρL].[a(t‐	
τ)]=	[1+ρL].[a(t‐	τ)]	and	the	first	arrival	to	the	source	is	[ρL].[a(t‐	2τ)]+[ρs].[	[ρL].[a(t‐	
2τ)]	=[1+ρs].[ρL].[a(t‐	2τ)].	

The	process	we	just	discussed	in	the	above	paragraphs	is	demonstrated	in	Figure	2.34	
and	the	resulting	waveforms	are	summarized	in	Table	2.4.	
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Figure	2.34	

Table	2.4	

@	Source	End	 @	location	z,	ሺࢊ ൌ र െ ሻࢠ @	Load	End
	 	 ൅z	 	 ൅z ൅z
	 ‐z	 ‐z	 ‐z To ࡸࢆ
To		࢙ࢆ	 	 	
	 aሺtሻ	 aሺ࢚ െ ሻࢠ࣎ ܽሺݐ െ ߬ሻ

ݐ௅ܽሺߩ െ 2߬ሻ	 ሺ࢚ࢇࡸ࣋ െ ࣎ െ ሻࢊ࣎ ௅aሺt‐߬ሻߩ ሾ1 ൅ ݐ௅ሿܽሺߩ െ ߬ሻ	
ሾ1 ൅ ݐ௅ܽሺߩ௦ሿߩ െ 2߬ሻ	 ݐ௅ܽሺߩ௦ߩ െ 2߬ሻ	 aሺ࢚‐2τࡸ࢙࣋࣋ െ ሻࢠ࣎ ݐ௅aሺߩ௦ߩ െ 3߬ሻ

ݐ௅ଶܽሺߩ௦ߩ െ 4߬ሻ	 ሺ࢚ࢇ૛ࡸ࢙࣋࣋ െ ૜࣎ െ ሻࢊ࣎ ݐ௅ଶܽሺߩ௦ߩ െ 3߬ሻ ሾ1 ൅ ݐ௅ܽሺߩ௦ߩ௅ሿߩ െ 3߬ሻ	
ሾ1 ൅ ݐ௅ଶܽሺߩ௦ߩ௦ሿߩ െ 4߬ሻ	 ݐ௅ଶܽሺߩ௦ଶߩ െ 4߬ሻ	 ࢙࣋૛࣋ࡸ૛ࢇሺ࢚ െ ૝࣎ െ ሻࢠ࣎ ݐ௅ଶܽሺߩ௦ଶߩ െ 5߬ሻ

ݐ௅ଷܽሺߩ௦ଶߩ െ 6߬ሻ	 ࢙࣋૛࣋ࡸ૜ࢇሺ࢚ െ ૞࣎ െ ሻࢊ࣎ ݐ௅ଷܽሺߩ௦ଶߩ െ 5߬ሻ ሾ1 ൅ ݐ௅ଶܽሺߩ௦ଶߩ௅ሿߩ െ 5߬ሻ	
ሾ1 ൅ ݐ௅ଷܽሺߩ௦ଶߩ௦ሿߩ െ 6߬ሻ	 ݐ௅ଷܽሺߩ௦ଷߩ െ 6߬ሻ	

	

	 	 Time	Domain	Series	

@
So
ur
ce
	

To	࢙ࢆ	 ܽሺݐሻ ൅ ሾ1 ൅ ௅ߩ௦ሿߩ ∙ ሼܽሺݐ െ 2߬ሻ ൅ ݐ௅ܽሺߩ௦ߩ െ 4߬ሻ ൅ ݐ௅ଶܽሺߩ௦ଶߩ െ 6߬ሻ ൅ ⋯ ሽ

‐z	 ௅ߩ ∙ ሼܽሺݐ െ 2߬ሻ ൅ ݐ௅ܽሺߩ௦ߩ െ 4߬ሻ ൅ ݐ௅ଶܽሺߩ௦ଶߩ െ 6߬ሻ ൅ ⋯ ሽ

൅z	 ܽሺݐሻ ൅ ݐ௅ܽሺߩ௦ߩ െ 2߬ሻ ൅ ݐ௅ଶܽሺߩ௦ଶߩ െ 4߬ሻ ൅ ݐ௅ଷܽሺߩ௦ଷߩ െ 6߬ሻ ൅ ⋯

@
z	

‐z	 ࢜ିሺࢠ, ࢚ሻ ൌ ࡸ࣋ ∙ ሼࢇሺ࢚ െ ࣎ െ ሻࢊ࣎ ൅ ሺ࢚ࢇࡸ࢙࣋࣋ െ ૜࣎ െ ሻࢊ࣎ ൅ ࢙࣋૛࣋ࡸ૛ࢇሺ࢚ െ ૞࣎ െ ሻࢊ࣎ ൅ ⋯ ሽ	
൅z	 ࢜ାሺࢠ, ࢚ሻ ൌ ሺ࢚ࢇ െ ሻࢠ࣎ ൅ ሺ࢚ࢇࡸ࢙࣋࣋ െ ૛࣎ െ ሻࢠ࣎ ൅ ࢙࣋૛࣋ࡸ૛ࢇሺ࢚ െ ૝࣎ െ ሻࢠ࣎

൅ ࢙࣋૜࣋ࡸ૜ࢇሺ࢚ െ ૟࣎ െ ሻࢠ࣎ ൅ ⋯

@
L

oa d ‐z	 ௅ߩ ∙ ሼܽሺݐ െ ߬ሻ ൅ ݐ௅ܽሺߩ௦ߩ െ 3߬ሻ ൅ ݐ௅ଶܽሺߩ௦ଶߩ െ 5߬ሻ ൅ ⋯ ሽ
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൅z	 ܽሺݐ െ ߬ሻ ൅ ݐ௅ܽሺߩ௦ߩ െ 3߬ሻ ൅ ݐ௅ଶܽሺߩ௦ଶߩ െ 5߬ሻ ൅ ⋯

To	ࡸࢆ	 ሾ1 ൅ ௅ሿߩ ∙ ሼܽሺݐ െ ߬ሻ ൅ ݐ௅ܽሺߩ௦ߩ െ 3߬ሻ ൅ ݐ௅ଶܽሺߩ௦ଶߩ െ 5߬ሻ ൅ ⋯ሽ

From	table	2.4,	we	can	write	expressions	for	the	signal	as	a	function	of	position	and	
time	as:	

,ݖାሺݒ ሻݐ ൌ ܽሺݐ െ ߬௭ሻ ൅ ݐ௅ܽሺߩ௦ߩ െ 2߬ െ ߬௭ሻ ൅ ݐ௅ଶܽሺߩ௦ଶߩ െ 4߬ െ ߬௭ሻ ൅ ݐ௅ଷܽሺߩ௦ଷߩ െ
6߬ െ ߬௭ሻ ൅⋯		 ሺ2.98ሻ	
,ݖሺିݒ ሻݐ ൌ ௅ߩ ∙ ሼܽሺݐ െ ߬ െ ߬ௗሻ ൅ ݐ௅ܽሺߩ௦ߩ െ 3߬ െ ߬ௗሻ ൅ ݐ௅ଶܽሺߩ௦ଶߩ െ 5߬ െ ߬ௗሻ ൅ ⋯ ሽ
	 ሺ2.99ሻ	
,ݖሺݒ ሻݐ ൌ ,ݖାሺݒ ሻݐ ൅ ,ݖାሺݒ 	ሻݐ ሺ2.100ሻ	

Time	Domain	Reflectometry	and	the	Bounce	Diagram:	

As	discussed	earlier,	 time‐domain	reflectometry	 is	a	 technique	used	 for	extracting	
information	of	a	transmission	medium	by	monitoring	and	analyzing	reflections	off	the	
medium	due	to	an	incident	pulse.	Typical	pulse	shapes	used	in	TDR	devices	are	either	
a	step‐like	waveform	(a	practical	version	of	an	ideal	step	function,	u(t),	or	an	impulse	
(a	practical	version	of	a	Dirac‐delta	function,	δ(t)).	In	this	section,	we	will	work	with	
the	ideal	waveforms	for	mathematical	convenience.	

Time‐Domain	Reflectometry	for	Ideal	Step	Waveform	Excitations:	

In	this	case,	we	assume	vs(t)=V	u(t),	where	V	is	the	amplitude	of	the	voltage	step.	To	
demonstrate	the	concept,	let	us	assume	the	simple	network	of	Figure	2.34	with	the	
following	parameters:	

Vs	=	1	u(t)	Volts	

Ro	=	75	Ohms	

RL	=	125	Ohms	

RS	=	50	Ohms	

Line	length	=	15	cm	

Speed	of	light	in	TL	material	=	1.5	E8	m/s	

Using	these	parameters,	we	conclude	that	

a(t)	=	1	u(t)	(75)/(75+50)	=	0.6	u(t)	Volts	

ρs	=	(50‐75)/(50+75)	=	‐0.2	

ρL	=	(125‐75)/(125+75)	=	0.25	

τ	=	0.15/1.5E8	=	1	ns	

Next,	we	use	 these	 values	 to	 substitute	 in	 the	bounce	diagram	of	 Figure	2.34	 and	
extract	 the	 essential	 information	 from	 Table	 2.4,	 namely,	 the	 TDR	 (time‐domain	
reflectometry)	 signal	 (appearing	 at	 the	 source	 end,	 and	 TDT	 (time	 domain	
transmission)	signal	appearing	at	the	load	end.		The	results	are	shown	below:	

	 Time	Domain	Series
@Source	end	ሺTDRሻ	 ሻݐሺݑ0.6 ൅ ݐሺݑ0.12 െ 2ሻ െ ݐሺݑ0.006 െ 4ሻ ൅ ݐሺݑ0.0003 െ 6ሻ

@Load	end	ሺTDTሻ	 ݐሺݑ0.75 െ 1ሻ െ ݐሺݑ0.0375 െ 3ሻ ൅ ݐሺݑ0.001875 െ 5ሻ ൅ ⋯

Consequently,	the	TDR	and	TDT	waveforms	are	as	shown	in	Figure	2.35	below:	
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Figure	2.35	

It	is	worth	noting	that	both	TDR	and	TDT	signals	converge	to	the	same	amplitude.		As	
time	approaches	 infinity,	 the	 “final	 value	 theorem”	 tells	us	 that	 the	 solution	 is	 the	
same	as	the	DC	solution.		For	DC,	the	TL	acts	like	a	zero	length	wire,	and	hence	both	
voltages	 at	 the	 sending	 and	 receiving	 ends	 are	 the	 same	 as	 the	 voltage	 divider	
between	the	load	and	source	impedances:	

Vtൌ∞	ൌ	V	RL/ሺRs൅RLሻ	ൌ	ሺ1	ሻ.ሺ125ሻ/ሺ50൅125ሻ	ൌ	0.7142857	V	

Time‐Domain	 Reflectometry	 for	 Ideal	 Dirac‐Delta	 Impulse	 Waveform	
Excitations:	

To	demonstrate,	let	us	consider	the	same	example	we	just	did	for	the	step	waveform	
while	considering	Vs	=	1	δ(t)	volts,	hence	a(t)	=	0.6	δ(t)	Volts	and	the	expressions	for	
the	TDR	and	TDT	signals	becomes:	

	 Time	Domain	Series
@Source	end	ሺTDRሻ	 ሻݐሺߜ0.6 ൅ ݐሺߜ0.12 െ 2ሻ െ ݐሺߜ0.006 െ 4ሻ ൅ ݐሺߜ0.0003 െ 6ሻ

@Load	end	ሺTDTሻ	 ݐሺߜ0.75 െ 1ሻ െ ݐሺߜ0.0375 െ 3ሻ ൅ ݐሺߜ0.001875 െ 5ሻ ൅ ⋯

Consequently,	the	TDR	and	TDT	waveforms	are	as	shown	in	the	Figure	2.36		below:	
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Figure	2.36	

The	final	value	in	this	case	is	a	zero	since	δ(t)	vanishes	when	t	approaches	infinity.	
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