Chapter III - Lecture 2 of 2
Transition to Electrostatics
Addendum II

Vector Calculus
Vector Definition and Examples:

A vector is a quantity characterized by having a specific magnitude and a specific
direction at each point in space. In this book will use the accented notation to denote

vector, e.g., a vector “F” will appear as F. A vector can be expressed as a scalar
multiplied by a unit vector that has the same direction as the vector itself:

ﬁZFC_iF

Examples of vectors include distance, velocity, and force among many other physical
quantities. The following table demonstrates some of these vector quantities.

Table 3.4 - Examples of Vectors

Vector Examples
Length
/
-
Velocity
— |//
L
Weight l,
mg
885
Surface Area .
o,
Force
Torque
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Vector Representations in Coordinate Systems:

To express a vector in a coordinate system is to write the vector in terms of the three
orthonormal components of that coordinate system. This is done by projecting the
vector along the three directions of the coordinate system and finding the magnitude
of each projection. If we denote the three projections of a vector F along the 3
coordinates of a “1-2-3” coordinate system as F1, F2, and F3, respectively, then we
can write:

ﬁ=ﬁ1+ﬁz+ﬁ3=F151+F252+F3d3 (3.1)

where d,, d;,and d, are the corresponding unit vectors of the coordinate system,
Figure 3.21.

Figure 3.21

In the following, we will overview vector representation in the three coordinate
systems. Two types of vectors will be demonstrated; distance vectors and others. The
reason for this classification is that distance vectors are expressed in terms of the
coordinate system dimensions and directions while the others will have different
units but only expressed in terms of the coordinate system directions.

Vector Representation in a Cartesian coordinate system

Figure 3.22

Figure 3.22 shows two types of distance vectors as represented in Cartesian
coordinates; distance from the origin and distance between two points. The distance
from the origin vector which we denote with the lower case r is in fact the same as
the Spherical coordinate vector # which can be written as:

r=xa,+ya,+za, (3.2)

The distance between two points (1 and 2) will be denoted by the upper case vector R.
This can be expressed as the difference between two T vectors as follows:
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Ro=Th—nm=(t+y0,+28)-(ta+yna +2a,) =, —x)ay +
2—yDay,+(zz—z)a, (3.3)

Vector representation for a general form vector

Next, we view the vector representation for a general form vector F in Cartesian
coordinates. This is demonstrated in Figure 3.23 yielding the analytical expression:

F=F+E+F=Fad +Fd, +Fad, (3.4)
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Figure 3.23

Vector Representation in Cylindrical coordinates

Z-axis

Figure 3.24

Figure 3.24 shows the two types of distance vectors as represented in Cylindrical
coordinates. The distance from the origin vector # can be written as:

f=pa+za, (3.5)

It is to be noted here that the @, unit vector is a variable one which may cause some

analytical challenges in some cases especially when integration is involved. When
these challenges dominate, it may be “wiser” to switch to the Cartesian coordinate
representation where all the unit vectors are constants.
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The distance vector RT£ between two points is also demonstrated in the figure. When
expressed as the difference between two T vectors we be challenged by the vector

subtraction of a@,, and a,;:
R,=7—1= (pza—pZ)-I_ZZa—Z))_(pla—p{"_Zla—Z)) = (Pza—pz)_le)'i‘(Zz_
z)a; = —x)ay+(,—y)ay,+(z, —z)a, (3.6)

Again resorting to Cartesian coordinates offers a simple way to deal with this
challenge.

Similarly, the general form vector F in Cylindrical coordinates is demonstrated in
Figure 3.25. This corresponding analytical expression is:

ﬁ=?2_ FI:(FZpaE"'Fzza_z))_(Flpa_m)"'Fua_z))=(F2p@;_F1pm)+

(Fyz—Fz)a,=Fa;+Fa,+Fa, 3.7)
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Figure 3.25

Vector Representation in Spherical coordinates

The case of Spherical coordinates, Figure 3.26, has challenges similar to those
discussed in Cylindrical coordinate representation; all 3 unit vectors are variables.
Switching to Cartesian offers the same convenience as discussed above.

-

F=F,-F =Fa;+Fa+Fa, (3.8)

Z-axis

A —————

e

Figure 3.26
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Vector Operations

The following table reviews various vector operations, gives examples of their
graphical and physical applications, as well as their representations in the three
coordinate systems. The “red-bold” terms in the expressions below indicate cases
where variable vectors present mathematical challenges. In such cases, we may
resort to the Cartesian representation where the unit vectors have constant
directions at all times.

Table 3.5 - Vector Addition and Subtraction

%
%8 -
§8 \ A 7
S 8 fl — i
35 S |B i B &
I3 Y B|/.*
“v yi ] —
A+B=+B+4
Cartesian A+B=A,a,+A, o)+ 4,0+ (B.a; +B,a, +B, @)
=, tB)a; + (A tB)a,+ (4, +B)a,
Cylindrical A+B= (A, @pa+A, @) + (B, @y + B, @;)
=(A,a,,+B,a,;)+ (A, +B)a, 2
=(A,*B)a;+(4,+B,)a,+ (4, +B)a,
Spherical A+B =A@, £ Ba5) P= A £B) T + (4, £B,) 3, + (4, £B) g
Table 3.6 - Vector Scaling

? cFE
g
@ F

Cartesian c(A;a;+A,a,+4,a,)=cA,a,+cA,a, +cA,a,
Cylindrical c(A,a,+4A,a)=cA,a,+cA,a,

Spherical c(A4, &) =cA @

Table 3.7 - Vector Dot Product
E W = Work Done byforceﬁ along the path ¢
&
’is\ -
Q £ £ \
5 Zoh fp i
3 F ==
8 o F .
Q W=Ff=F¢ W=Ff=F¢
I = Current flow through the surface S due to area density i
S,
—_—
J 1=/8§=7Js
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B,

‘B = [Ag]1 B = [A cos(a)] B = AB cos(a)
‘B=4 [B4] =4 [B cos(a)] = AB cos(a)
A-B= A B, + AyA, = [A cos(p,)B cos(pg) + Asin(p,)B sin((pB)]

= AB [cos(pa)cos(@p) + sin(@a)sin(pp)] = AB[cos(pp—pa)]
= AB cos(a)

Cartesian

AB=(Aa+A,a,+4,a) (B.a+B,ay+B,a;)=A B, +A B, +4,B,

Cylindrical

A'§=(Apa4M)+AzEz')'(Bpa—m3'+Bza-z)) =Apo(a—pA"Tpl¥)+Asz

Spherical

A-B= (Arm)' (Bra—rl;) = A,B-(a,4 @p)

Table 3.8 - Vector Cross Product

Vector (Cross) Product

T =T orque vector due to a force Fand anarmd

Torque a
n

a
Vector \

all

S$=%xb=¢b,a,

]

)
a,(=a,) B. A

.

A, “
-
AxXB= [A,] Ba, = [Asin(a)] Ba, = ABsin(a) a,

Ax B =A[B,)a, = A[Bsin(a)] @, = ABsin(e) @,

AxB = [AxByZz; + AyBx(—a‘n')] = [A cos(@4)Bsin(pg) — Asin(p,)B COS((pB)] a,

= A B [cos(pa)sin(pp) — sin(p,)cos(pp)] a,

= AB[sin(¢s—¢4)] @, = ABsin(a) a,

AxA=0, AxBE=-BEx4

Cartesian

e
Ay XAy =08, , Gy XA =0y , Az Xy = @,
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a;, a4 a
AxB=(A,a+A,a+4,5)x (B, @ +B, @ +B,a@)= |4, A, 4,
B, B, B,
Cylindrical AQXa,=0a, , Ay XA, =0, , G, XA, =qy,
AxB=(4,a,,+4,a)% (B, a5 + B, a;)
= ApB,(@,4 X @p5) + (4B, Gps X @ + A,B, @, X Tpp)
= A,B,(a,, X a,5) + (—A,B, ays + A,B, Tpp)
Spherical U/ Xag=0a, , Gg XA, =0 , Gy, X0, =0g

Ax B =(4,a,,) % (B, @) = A, B, (@4 X )
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Addendum III

Spatial Distributions and Densities

In the following we will discuss spatial distributions and densities of both static and
dynamic quantities.

Static Distributions and Densities

Static quantities, such as mass, charge, or energy, may exist in several possible spatial
distributions, Figure 3.27:

1. A concentration in an infinitesimally small volume, which we typically represent
as a “point”.

2. A distribution over a volume with infinitesimally small cross-section, which we
typically represent as a “line”.

3. A distribution over a volume with infinitesimally small thickness, which we
typically represent as a “surface”.

4. A distribution over a volume with non-zero dimensions.

D{!F

o
= |

de
Pr ds | E}’ dv
U g
Point Line Surface Volume
Concentration Distribution Distribution Distribution
Total =@ P, =dQ/dt P =dQ/ds p,=dQ/dv
Figure 3.27

These distributions may or may not be uniform. To express their spatial features, we
use appropriate density expressions such as volume, area, or linear density of the
quantity distribution. Densities of static quantities are scalar in nature, i.e. have only
magnitudes and do not have directions. We will use the subscripted pv, ps, and p¢ to
denote volume, area, and linear densities, respectively. Hence, for the static quantity
Q, we can write

b= Ps =g, andpy =15 (3.9)
For uniform distributions, the density is constant at all the distribution locations,
otherwise, the density would be a function of position. Depending on the case, these
densities may or may not have physical relevance and their definition could be
meaningless. Examples are defining a volumetric density for a point concentration
where the volume is zero, or defining the linear density for a spherical volume
distribution. The following table summarizes the corresponding densities for the four
distribution forms.

Table 3.9 - Static Distribution Densities

. . Volume Density= Quantity Surface Density= Linear Density=
Configuration . . ; . .
per unit volume Quantity per unit area Quantity per unit length
Point Zero volume = Zero aread Zero length=>
Concentration pv=co pPs = oo pr= o
Line Zero volume = Zero aread
Distribution pv=oco ps = co Pt
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Surface Zero volume =2
ical?
Distribution pr=co ps (Atypical?)
Volume ] ]
? 2
Distribution P (Atypical?) (Atypical?)

Conversions between static density expressions:

In some distribution configurations, more than one form of density can be
simultaneously defined. An example is a cylindrical volume distribution for which a
volumetric density can be defined while a linear density along the cylindrical axis can
be defined as well. For such cases, it is useful to have conversion expressions between
the different forms. In the following, we provide examples of such conversion
relationships.

Table 3.10

Non uniform distribution Uniform distribution
Sheet AS AP AS Af
distribution v =
_de ;

p s — d S

Is defined

s

Rectangular AS AP Av
prism (P
(Slab)
distribution
dQ
Py =10

Iis defined

ps=pst

Pe=pytw

Circular prism yit4 Av A
(Cylinder) 3 '
distribution
_4e
p v = dv

Iis defined

f_gpv dU

Pe=""1p szvdS

Dynamic Distributions and Densities:

Examples of dynamic quantities include electric current, air current, fluid flow, and
energy flow. Spatial distributions for a dynamic flow can only exist in one of the
following forms, Figure 3.28:

1. A stream distribution with infinitesimally small cross-section, which we typically
represent as a “line current/flow”.
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2. A stream distribution with infinitesimally small thickness, which we typically
represent as a “surface current / laminar flow”.
3. Astream distribution with non-zero cross-sectional area, “volume current/flow”.

/""""_“---‘._ I -

|
ortho gdﬁ Al

gurface

. et
;rth%dna\'—‘“‘{ac
or

, e
| -\suﬂac
é‘_‘hogoﬂa

Volume Current

Line Current Surface Current

Linear Density of Surface Current K = 2—:

Figure 3.28

A af
Total Current [ Surface Density of Volume Current | = a5

These distributions may or may not be uniform. To express their spatial features, in
both magnitude and direction, we use appropriate vector density expressions.

d

> IS i o
J=-—q
dsy

and K=-— a; (3.10)
dén

where the n subscripts indicate that both d¢ and dS must be orthogonal to the flow
and d; is the unit vector along the current/flow direction. For uniform distributions,
the densities are constant at all the distribution locations, otherwise, the density
would be a function of position. Again, depending on the case, these densities may or
may not have physical relevance and their definition could be meaningless. The
following table summarizes the corresponding densities for dynamic distributions.

Table 3.11 - Dynamic Distribution Densities

Configuration Area Densi = Quantity Linear DEIISI'IJ/= Quantity
per unit area per unit length

Line Stream Zero area Zero length>
Concentration j’ S K=o

Surface Stream Zero area 2
Distribution j: o

Volume Stream > ]
Distribution J (Atypical?)

Conversions between dynamic density expressions:

In this section, we demonstrate the relationship between the two forms of dynamic
distribution densities in cases where both can be simultaneously defined. In the table
below, we the example of a stream distribution in a slab configuration and the
corresponding conversion relationships.

Table 3.12

Non uniform distribution Uniform distribution n

Slab Stream
Flow/Current
. dI
J= d_Sn a
is defined
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Addendum IV

Line, Surface, and Volume Integrations
Introduction

In the course of this book, as we deal with various physical phenomena, analyses
involving integration of scalar and vector quantities is common. We often need to
carry out contour (or line) integrations, integrations over an area of a surface, a closed
surface as well as volume integrations. Our background in mathematics should
enable us to carry most of these integrations once they are set up properly. We can
also resort to integration tables, computer software packages, or even numerical tools
for “difficult” integrations. Hence, in this addendum, we will focus on two aspects of
the issue that are often the obstacle. One is how to set up the integration equation
starting with the physical problem, and the second is how to deal with vector
quantities within the integrand.

The first obstacle of setting up the integral is an “integral” part of setting up the proper
mathematical model of the physical problem. This is an acquired skill that the
learners in this field acquire with practice. The learner needs to get exposed to a
variety of cases and a variety of analysis tools to appreciate what works and what
does not and when to use a specific model and what are the constraints of that use.
Gaining this skill requires proper appreciation to the physics of the subject and good
command of relevant mathematical tools. This will be demonstrated and emphasized
throughout the different chapters of this book.

We now turn to dealing with integrations containing vector quantities. This will be
followed by an overview/survey of line, surface, and volume “scalar” integrations.

Integrating vector quantities

To integrate vector quantities is simply performing vector summation of incremental
vector elements. Since the sum of vectors is controlled by the directions of the vectors
involved, the process of vector integration must take into account the variability of
the direction of the vectors being integrated. Let us start with a “sarcastic” but true
statement by saying that “The proper way of handling vector integration is not to do
vector integration.” What is meant here is that we should not start the integration
process before we remove all vector quantities from within the integrand.

The process involves finding ways to get all vector terms outside the integration sign
leaving only scalar quantities inside the integration. To extract a term outside the
integral operator, this term must be a constant. Hence, what we must do is express
all variable-direction vectors in terms of fixed-direction vectors that can then be
extracted outside the integration. Let us cite some examples to demonstrate.

Example of a Cartesian coordinate Integral

[Xdx=[xd,dx=d,[x dx=&x(§+c) (3.11)
[ydx=[yd,dx=ad, [y dx (312)
Example of a Cylindrical coordinate Integral

2
[pdp=[pd,dp=ad,[p dpzap(p?+c) (3.13)

For an integration along dp, the “d,, ” has a constant direction and hence it is a constant
vector that can be taken outside the integration. However if the same integration was
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“«=>n «=>n

along dg, the “a,” will vary as we vary ¢ and hence “a,” needs to be expressed in
terms of other constant-direction vectors to be able to carry out the integration.
Logically, we use the Cartesian unit vectors “d,,d,,and d," which are always
constant vectors in this regard,

JBdo=[pd,dp=[p(cospa;+sinpay)dp=[p(cospay)dp+
Jp(sing@,) dop =a, [ p(cosp)dp +ay [ p(sing) dp = a; (psing +c¢;) —
a, p (cosp +c3) (3.14)

Adding the limits between 0 and 2, this integration reduces to:
27T > — 2 — 2 .
)T Bde =a; p [, (cosp) dp+ay p [ (sing) dp =0 (3.15)

This result makes physical sense since adding the variable direction vector g around
a complete 21 (360 degrees) rotation will produce zero net, see Figure 3.29.

Figure 3.29
Example of a Spherical coordinate Integral
[#dr=[rd,dr=ad, [rdr=d, (r*/2) (3.16)

J7d0=[rd,do = [r(sinfcospa,+sinbsinga, +
cosfa,)dd =a, [rsinfcospdd +a, [rsin@sinpdd +a, [rcosOdo (3.17)

Integrating scalar quantities

In this section, we will survey a few examples of line, surface and volume integrations
that we will find relevant in the chapters ahead.

Examples of Density Integrations:

Two types of densities are reviewed here; static and dynamic. Examples of static
densities include mass and charge distributions, while examples of dynamic densities
include fluid flow and electric current.

Static Linear Density

If p,(position) is the linear density of the distribution of a quantity Q, we can
obtain the total Q by integrating the linear density over the length of the
distribution.

Q=[do=[2dt=[p,de (3.18)

Static Surface Density

If ps(position) is the surface density of the distribution of a quantity Q, we can
obtain the total Q by integrating the surface density over the area of the
distribution.

Q=[do=[f% as = [ psds (3.19)
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Static Volumetric Density

If p,(position) is the volumetric density of the distribution of a quantity Q, we
can obtain the total Q by integrating the volumetric density over the volume of
the distribution.

Q=JdQ =% dv=ffp,dv (3.20)

Dynamic Linear Density

If K,(position) is the linear density of the distribution of a current (flow) I, we
can obtain the total I by integrating the linear density across the cross-sectional
length of the distribution. The cross-sectional length is a length orthogonal to the
flow distribution, Figure 3.30.

I=[di=[%dt=[K,de (3.21)

Figure 3.30

Dynamic Surface Density

The total flow (current), I, flowing through a specific surface is the integration of
the flow surface density (J=dI/dS) over the cross-sectional surface area of
interest. The cross-sectional area is that of a surface orthogonal to the flow
distribution, Figure 3.31.

I=[dl=[[Zds=[[]ds (3.22)

Figure 3.31

Examples of Work and Energy Integrations:

The work done by a force acting on an object as it moves an unconstrained object
a certain distance (along the action line of the force), see Figure 3.32.

W= [dW = [Fdt (3.23)
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Figure 3.32

The total energy stored in a specific volume is the integration of the volumetric energy
density (w=dU/dv) over the volume of interest.

U=fdu=[[f< dv=[[[wdv (3.24)

Table 3.13 - Examples of integrations In different coordinate systems

Line: [ F d¢ Surface: [[ ] dS Volume: [[[ w dv

= f F(x,y,z)dx ff](x, y,z) dydz _[U w(x,y,z)dxdydz
S
§ f F(x,y,z) dy f J(x,y,2) dzdx

f F(x,v,2)dz ff](x, y,z) dxdy
~ F(p,p,2) dp J(p. 9, 2) pde dz w(p, ¢,z) dp pde dz
s | J I
E fF(pxp.Z)pd(p ﬂ/(prw.Z)dzdp
S f F(p,¢,2) dz f J(p, ¢, 2) dp pde
E f F(r,0,¢)dr ff](r, 6, ) rdo rsind do _[U w(r, 0, ) dr rd rsiné de
% f F(r,0,p)rdo f J(r,8,9) dr rsinf de
s f F(r,0,¢) rsinf do ff](r, 0,9) drrdo

COCOCOCOCOCOCOCOCOCOCD
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